Master’s Thesis

AC#DSIm

AC/DSIM: FULL-SYSTEM ENERGY
ESTIMATION WITH MODULAR
SIMULATION

JONAS KAUFMANN
December 16, 2024

Advisor:
Dr. Antoine Kaufmann Operating Systems Group

Examiners:
Dr. Antoine Kaufmann Operating Systems Group

Dr. Laurent Bindschaedler Data Systems Group

Operating Systems Group
Max Planck Institute for Software Systems
Saarland University

UNIVERSITAT
DES
SAARLANDES

Jonas Kaufmann: AC/DSim: Full-System Energy Estimation with Modular Simulation
© December 2024

Erklarung

Ich erklare hiermit, dass ich die vorliegende Arbeit selbsténdig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that | have written this thesis on my own and that | have not used
any other media or materials than the ones referred to in this thesis

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veréffentlicht wird.

Declaration of Consent

| agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbricken,

(Datum/Date) (Unterschrift/Signature)

ABSTRACT

Heterogeneous computer systems incorporate specialized hardware like FPGAs and ASICs
for significant performance and energy efficiency improvements over CPU-only systems.
However, meaningful evaluation and comparison of these systems requires assessing full-
system performance and energy usage, which is often challenging due to the unavailability
of physical prototypes. Full-system simulation tools offer an alternative by modeling system
components and their interactions in detail, allowing researchers to estimate full-system
performance. These tools often either only provide energy estimates for single components
though, or abstract away a lot of detail, leading to low accuracies.

This thesis introduces AC/DSim, a modular framework for full-system energy and
performance estimation, which extends SimBricks full-system simulations with modular
energy estimation. We built AC/DSim to integrate detailed power models for components
such as CPUs, caches, memory, hardware accelerators, and networks. By running complete
software stacks in simulation, AC/DSim collects accurate workload information, enabling
accurate power estimation throughout the workload’s execution. The framework supports a
modular combination of power models, allowing adaptation to various system designs and
use cases.

We evaluate AC/DSim for a simple heterogeneous system featuring an ARM CPU and
an FPGA-based deep learning accelerator. Preliminary results demonstrate AC/DSim ’s
feasibility to combine simulators and power models to estimate full-system performance and
energy usage. While AC/DSim can efficiently combine existing power models, simulation
speed varies significantly depending on the simulators used and their inherent overhead
for logging the workload information power models require. Initial findings highlight
modeling errors in the CPU simulator we use, leading to inaccurate performance and
energy estimations. Nevertheless, AC/DSim successfully captures dynamic power trends,
suggesting its potential for accurate system-wide evaluation once modeling limitations
are addressed. This work lays the foundation for enabling comprehensive evaluation of
heterogeneous systems, particularly those involving ASICs, where physical prototypes are
unavailable.

CONTENTS

Introduction
2 Background
2.1 Power Draw and Energy Usage
2.1.1 Power Consumption of Modern Hardware
2.2 Per-Component Power Models
2.2.1 Hardware Accelerators Power Models
2.2.2 CPU and CPU Caches Power Model
2.3 Full-System Simulation 0 oL
2.3.1 Simple HW Accelerator System: Important Components and their
Interactions
2.3.2 Assembling Full-System Simulations with SimBricks
2.3.3 HostSimulation. o o L
2.3.4 HW Accelerator Simulation and Power Estimation
3 Design
31 DesignGoals.
3.2 High-Level Overview
3.3 Design Assumptions L oL
3.4 Collecting Workload Information in a Full-System Simulation
3.5 Sampling Power Estimates
4 Implementation
4.1 Our FPGA SoC Baseline System
4.2 Simulating the FPGA SoC Baseline System
4.2.1 Speeding Up Gate-Level Simulation
4.3 Estimating Energy of the FPGA SoC Baseline System
4.3.1 FPGA Power Estimation
4.3.2 CPU and CPU Caches Power Estimation
4.3.3 Post-Processing for Full-System Energy Usage
5 Evaluation
5.1 Evaluation Questions Lo
5.2 HW Accelerator and Workloads
5.3 Measuring the Physical Baseline
5.4 Measurements with AC/DSim
55 Results e
5.5.1 RQz1: Feasibility of Modularly Combining Power Models
5.5.2 RQ2: Estimation Efficiency
5.5.3 (Preliminary) RQ3: Accuracy of Power and Energy Estimates
6 Related Work
Conclusion
7.1 Discussion and Limitations, .
72 Future Work

O O O

13
13
13
15
15
16
17
17
18
19
21
21
21
23
25
25
25
27
28
28
28
30
32
37
39
39
40

vii

viii

CONTENTS

Bibliography

43

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.1

Figure 4.1

Figure 4.2

The components of a simple heterogeneous system. The CPU can of-
fload computations to a PCle-attached accelerator. During execution,
components send requests to other components in the direction of
the arrows and receive data responses in the opposite direction. We
call CPU, its caches, and the host memory host.
The instantiation of the simple heterogenous system from Figure 2.1
in the full-system simulation framework SimBricks ?‘). SimBricks
connects the two simulator processes by forwarding requests and
responses via shared memory queues and synchronizing the two
simulators. L
A larger heterogeneous system that involves multiple client hosts that
send requests to a server host over the network. For faster and more
efficient computations, this server uses a PCle-attached accelerator.
An application of such a system is mobile clients requesting machine
learning inference from a backend server. To simulate such a system,
we run individual simulator processes for every component shown in
this figure and use SimBricks to connect them via natural boundary
protocols like Ethernet and PCle.
High-level overview of our framework’s steps to compute full-system
power and energy estimates. First, we run a full-system simulation
that collects workload information samples, which we then feed
into power models that span one or more system components to
compute power time series. Finally, during post-processing, we sum
the individual time series into a full-system power time series and
full-system energy estimate.
The representation of the baseline FPGA SoC board in a SimBricks
full-system simulation. We use gems to simulate the host and Vivado
xsim to simulate the FPGA. To connect the hardware accelerator de-
ployed on the FPGA to the host, we use adapters that use SystemVer-
ilog DPI to translate AXI transaction off the wire into SimBricks PCle
transactions and vice-versa. On the gems side, SimBricks provides
an adapter that acts as a simulator-native PCle device and exchanges
SimBricks PCle boundary protocol messages with the FPGA-side
adapters through shared memory queues.
Power time series for CPU and caches measured vs. estimated us-
ing the adapted GemStone ARM Cortex-A15 power model. As a
workload, we used TVM [3] running ResNet [15] image classification
modelsonthe CPU.

ix

Figure 4.3

Figure 5.1

Figure 5.2

Power models A and B have different sampling frequencies and
start/stop sampling at different timestamps. For computing the full-
system power time series, we only consider the evaluation window,
where both power models provide samples, and use a common

denominator of all sampling periods as the evaluation sampling period. 24

The power over time estimated by AC/DSim for CPU-only and
VTA-accelerated inference using resnet18-vi and resnet34-vi models.
The red vertical line marks the point in time when TVM invokes
the accelerator. gems crashes before the workload completes for all
workloads that involve VTA. (*) The resnet34-vta workloads did not
finish after more than g days of simulation, so the power their power
time series are cut offattheend.
Comparison of component-level power draw over time as estimated
by AC/DSim with the measurements taken on our physical FPGA
SoC. (*) The resnet34-vta workloads did not finish after more than 9
days of simulation so the power time series are cut off at the end. . .

LIST OF TABLES

35

Table 5.1

Table 5.2

Table 5.3

The power draw of our FPGA SoC board when idle and measuring
power draw with gemstone-profiler-logger using different sampling
frequencies. We show the mean power draw when measuring for 10
seconds, along with its standard deviation.
The simulation speed overhead when collecting the workload infor-
mation we require for AC/DSim compared to running an identical
SimBricks simulation without collecting any workload information.
The slowdown factor for SimBricks and AC/DSim represents how
many seconds we need to simulate to advance the virtual timestamp
by one second. The overhead is computed as é‘l%glscf; gllgxggxﬁ The
clock frequency of VTA is the last number in the workload name, i.e.
100or 167, andisinMHz. oo oo L.
Median workload duration and standard deviation measured on the
physical FPGA SoC board in comparison to the simulated duration
from AC/DSim. The last column shows the error relative to the phys-
ical baseline. For all workloads running in AC/DSim and involving
VTA, gems crashed (*). In this case, we measured the duration of
the workload until the crash. From profiling the physical system,
we know that the part of the workload after the crash that is not
executed is in the order of 10s of milliseconds.

27

Table 5.4 Full-system energy usage and standard deviation measured on the

physical FPGA SoC board in comparison to the AC/DSim estimation.
The last column shows the error relative to the physical baseline.
For all workloads running in AC/DSim that involve VTA, gems
crashes and we additionally identified significant modeling errors
(*). The resnet34-vta workloads did not finish after more than 9 days
of simulation. o

LISTINGS

2.1

An excerpt of a gems stats.txt file showing various statistics collected during
workload execution. These statistics are very detailed, containing information
about pipeline stages, cache accesses, etc.
Terminal output of a TVM resnet18-v1 image classification inference when
using only the CPU for computing. The input image was a cat. Along with
the classification labels, TVM also outputs a value representing the certainty.

26

xi

INTRODUCTION

We build increasingly heterogeneous systems that use specialized hardware such as FPGAs
and ASICs to offload computations from the general-purpose processor. Key metrics we
aim to improve while doing so are full-system performance, such as request throughput
or latency, and full-system energy usage, for example, the energy consumed per request.
Introducing specialized hardware can provide orders of magnitude improvements for both
these metrics [19, 22].

However, evaluating such systems often either lacks one of these two metrics or does
not take the full system into account. [36] Evaluating the hardware accelerator in isolation
by reporting its peak performance and energy usage does not suffice. Moving data for the
computation from host memory to the accelerator incurs latency overheads, which can
quickly become a bottleneck for full-system performance. [11, 19, 38] Further, considering
just the energy usage of the accelerator and comparing that to running the same computation
on the CPU only yields an incomplete picture since the CPU still uses energy while waiting
for the accelerator to finish its computation. Therefore, only when taking full-system
performance and energy into account can we meaningfully compare different designs of
heterogeneous systems [36].

In practice, measuring full-system performance and energy usage is hard because, depend-
ing on the system design, building a physical prototype, which we can measure as usual, is
often infeasible. In some cases, we can physically prototype and measure systems using
an FPGA for the hardware accelerator [9, 21, 23]. However, FPGAs are not representative
of ASICs, which clock an order of magnitude higher and also feature orders of magnitude
better energy efficiency. [22] Yet, FPGAs are usually the only option to evaluate as a full
system [18, 43, 48]. When dealing with ASIC clock speeds, data movement bottlenecks also
tend to show up, so using FPGAs to evaluate system designs that deploy ASICs is only
convincing if the FPGA implementation is already competitive in terms of performance or
energy efficiency.

Full-system simulation tools [24, 27, 33, 35] offer an alternative to evaluating physical pro-
totypes by modeling each component and their interactions. For example, the SimBricks [24]
modular full-system simulation framework provides full-system performance evaluation
for small and large computer systems by combining and connecting different simulators
for different components. While these can be used to evaluate the performance of the full
system, they lack a means of evaluating its energy usage. Even though other tools exist that
take both energy and performance into account [11, 29, 38], they often either target only the
energy usage single components or abstract away too much detail with high-level modeling.
Further, these tools are typically specialized for narrow use cases and, by construction, are
not extensible to other devices, workloads, or larger systems.

This thesis aims to close this gap and presents a first step towards enabling meaningful
evaluation of heterogeneous systems. We introduce A(# (AC/DSim), a modular
full-system energy estimation framework built on the SimBricks full-system simulation

INTRODUCTION

framework that combines modular simulation for performance results with modular power
estimation for energy full-system energy usage.

The key idea in AC/DSim is to combine power models for components like CPUs and
caches [10, 25, 40, 46, 47], memory [8, 14], hardware accelerators [7, 11, 31, 37, 38, 42, 44,
47], SSDs [30], and the network [13, 20, 29, 34] from prior work. Users can modularly
choose the power models for each component that best suits their use case. These power
models require accurate workload information for accurate estimates, which we collect in
a SimBricks full-system simulation by running the full software stack, which includes the
operating system, device drivers, and workload applications. The virtual testbed includes all
hardware components, simulating interactions between them, for example, data movements
when invoking the accelerator. During the simulation, we periodically sample workload
information, which we use to invoke individual power models multiple times and therefore
provide estimates of how a component’s power draw changes dynamically throughout the
workload’s execution. Finally, to compute the full-system energy usage, we combine the
power estimates during post-processing.

Our goal for this thesis is to demonstrate the feasibility of this idea, which we evaluate by
estimating the energy usage and full-system performance for a simple heterogeneous system
consisting of a small ARM CPU and an AXI-attached FPGA in the form of a system on a
chip. On the FPGA, we deploy an open-source deep-learning hardware accelerator [4]. Even
though we evaluate AC/DSim for an FPGA system, we ultimately target the evaluation of
systems for which physical prototypes are unavailable, such as when designing ASICs. We
argue that FPGA power models and the workload information they require are similar to
ASICs, from which we claim that we can also support the evaluation of ASIC systems.

During our evaluation, we find that AC/DSim can indeed efficiently combine existing
power models and simulators to provide full-system energy and power estimates. Depending
on the sampling period the user chooses, we do so with negligible overhead on disk space
required to store the workload information. Depending on the simulator, however, enabling
the collection of the workload information can either have no impact on simulation speed or
significantly slow it down, making it simulate up to twice as long. Our concrete simulation
implementation suffers from a heavy slowdown of more than 1°000’000 times over real-time
for gate-level simulation of the hardware accelerator even when not logging workload
information, meaning we need to simulate for 1’000’000s to forward virtual time by just 1.
This is a fundamental limitation of the simulator we chose for the hardware accelerator but
not for AC/DSim. We outline how to use alternative simulation approaches for the hardware
accelerator, which are orders of magnitude faster but also possibly less accurate. Due to
the slow simulations, we only provide preliminary results on the accuracy of performance
and energy estimates using short workloads. For these workloads, we observe a significant
modeling error in our CPU simulator, which causes errors of roughly —40 % for estimated
full-system performance, which is also reflected in the full-system energy estimates with
errors of up to -27%. The per-component power time series can accurately capture the
dynamic evolution of power draw throughout the workload execution though, hinting that
when fixing the modeling errors, AC/DSim can accurately estimate full-system energy and
performance.

BACKGROUND

In this chapter, we provide the necessary background to follow this thesis. We start with the
fundamental difference between power draw and energy usage, which are two key concepts
throughout this thesis. Further, we discuss that the power draw of modern chips has two
components: static and dynamic. The latter depends on the workload and accounts for the
majority of total power draw, highlighting the need for high-quality workload information
when aiming to accurately estimate power draw. We then introduce existing power models
for different components, which we are going to use to implement our proposed framework
for a simple heterogeneous system. For collecting the workload information that these
require to accurately estimate dynamic power, our framework’s later introduced design relies
on full-system simulation. Therefore, we also present the necessary simulation fundamentals,
especially regarding SimBricks, the full-system simulation framework we use.

2.1 POWER DRAW AND ENERGY USAGE

Power draw and energy usage are two important concepts we use throughout this thesis.
While energy E measures how much electricity a computation uses, power P is the momen-
tary rate of energy usage. Energy usage is, for example, an important consideration when
designing systems that operate off a battery because it determines how long the battery will
last [29]. It also controls the operating costs of a system [36]. In contrast, power draw is
interesting when discussing peaks and valleys to appropriately size the cooling and power
supply for a chip [17].

In the electrical setting, power is the product of Voltage V and Current I and expressed
in Watts (W). Energy is the integral of power draw over time and as a result, its unit is
Watts * Seconds or Joule (J).

In practice, we cannot measure energy usage directly. Instead, we need to periodically
sample the power draw of a physical component using a power sensor, which has a specific
sampling frequency Fuupiing OF temporal resolution. Since this yields measurements only
for discrete time points, we can’t compute energy using the integral. Instead, we can
approximate actual energy usage, assuming that the power draw remains constant for one
sampling period.

E~ Z X * Tsampling (2-1)
0<i<N

where
* N is the number of samples

* x; is the i-th power measurement

1
FSumpling

* Tsampling is the sampling period and equal to

BACKGROUND

In this thesis, whether we are measuring or estimating power draw, we always follow this
formula to compute energy usage.

2.1.1 Power Consumption of Modern Hardware

Total power draw of modern hardware can be broken down into two parts, static and
dynamic power [31] and both are significant [12]. Static power is the amount of power
consumed when transistors are powered but do not switch. The most significant draw stems
from transistor leakage current:

Pstatic = Vialieakage (2.2)
where
* Vj, is the supply voltage of the chip
® Ijeakage 18 the leakage current

Tjeakage mainly depends on the transistor fabrication technology and temperature [31].
In comparison, dynamic power is the power CMOS transistors consume while switching
and can be expressed as

denamz‘c = “CLdechlock (2-3)
where
* « is the switching activity or average number of transistor switching per cycle
¢ (Cr, is the load capacitance

¢ is the clock frequency

For modern hardware, dynamic power draw is the most significant part of total power
draw [12]. To estimate it accurately, we especially need to consider F., and «. More
concretely, the key point of AC/DSim presented in Chapter 4 is to compute accurate
switching activities for transistors throughout a chip, which is determined by the workload
that uses the microchip.

2.2 PER-COMPONENT POWER MODELS

After discussing the fundamental factors determining static and dynamic power draw in
Section 2.1.1, we now present power models for hardware accelerators, CPU, and CPU
caches. These models estimate the total power draw of individual components. Our approach
for AC/DSim relies on summing individual per-component estimates into a full-system
power draw, which we can then use together with Equation 2.1 to compute full-system
energy use. In this thesis, we consider three components: hardware accelerators, CPUs,
and CPU caches. For hardware accelerators, we assume that their hardware source code
is available. For CPUs, including their caches, however, this is usually not the case. We
therefore turn towards black-box power models, which operate using proxy metrics instead
of signal activities to estimate dynamic power.

2.2 PER-COMPONENT POWER MODELS

2.2.1 Hardware Accelerators Power Models

We introduced equations to compute the power draw of transistors in Section 2.1.1. In
practice, however, these are too low-level and quickly become unpractical as the size of the
circuit increases [31]. Instead, we choose power models that operate at higher abstraction
levels, concretely the level of gates, which are made up of multiple transistors. Every gate
has one or multiple boolean in- and output signals. At this level, we approximate dynamic
power by using boolean signal activity of the inputs instead of transistor switching activity.
Although our approach works for ASICs as well, we focus on FPGA power estimation
throughout this thesis since we don’t have a physical open-source ASIC available that we
can use to evaluate against. In this section, we therefore first discuss FPGA power models
in detail and then show the similarities to ASIC power models.

For AMD and Intel FPGAs, their respective EDA suites, namely AMD Vivado and Intel
Quartus Prime Pro, provide post place-and-route power analysis tools, which take files con-
taining boolean circuit signal activities as input to provide more accurate power estimates |2,
17]. These tools are proprietary and their exact algorithms are unknown. In this thesis, we
focus on Vivado since we have access to a physical AMD Xilinx FPGA for the evaluation of
AC/DSim. The approach for Intel Quartus Prime Pro should be analogous though.

The power estimation uses the fully placed and routed design. In case the circuit signal
activities are unknown, Vivado will estimate circuit signal activities, which is generally
very inaccurate. For the hardware accelerator we use during evaluation, Vivado estimates
1,721 W, whereas the actual power draw when idle is 0.25 W. By feeding in accurate circuit
signal activities, Vivado estimates much more accurate 0.49 W. So, power estimation without
circuit signal activities is very inaccurate, especially because it cannot capture power draw
varying over time as the utilization of the hardware accelerator changes, as in a real system.

To compute accurate signal activities, we must perform a gate-level simulation using
Vivado’s built-in simulator xsim. This requires stimulating the hardware accelerator’s wires
going into the design. To collect accurate signal activities, this stimulus has to match how
the workload software running in the system would interact with the hardware. For this,
we could use a Verilog testbench that models the workload, which is cumbersome to write
and has the potential for modeling errors. During modeling, we must ensure we accurately
capture the effects of software running on the CPU this hardware accelerator is connected
to, i.e., operating system, driver, and applications. To easily collect this information without
modeling errors, we use full-system simulation, which we introduce in Section 2.3.

Alternatively, we can also perform an RTL-level simulation, which is faster but incurs
a loss of accuracy. The reason is that RTL is again a higher abstraction level than gates.
Expressions in RTL don’t directly represent gates. For example, during Synthesis, Vivado
will take simple boolean operations, possibly merge them as an optimization, and express
them via one or many LUTs (lookup tables), which are the actual gates the FPGA provides.
This means that objects in the RTL hierarchy can be completely replaced during synthesis.
The in- and outputs of modules typically remain intact though. Consequently, Vivado will
only be able to match the activities for a fraction of the signals. For example, for a simple
JPEG decoder [16], we go from 98 % of signal activities matched when using gate-level
simulation to just 20 % for RTL-level simulation.

BACKGROUND

For unmatched signals, Vivado runs its algorithm to estimate signal activities. According
to their documentation, Vivado still takes the matched signals into account to estimate the
missing activities [2]. So the RTL estimation is still better than no workload activities. In this
thesis, we will focus on gate-level simulation since that enables the most accurate power
model for an FPGA.

Even though we focus on FPGA estimation in this thesis, the approach for ASICs is the
same from a user’s perspective. All of these models require signal activities for accurate
results and perform estimation using signal activities either collected during a gate- or RTL-
level simulation. Similarly to Vivado, Synposys Prime Power [42] and Cadence Genus [7]
both use information from gate-level or RTL-level simulation to provide signal activities [31,
42]. Meanwhile, OpenSTA uses only RTL-level simulation results [44].

2.2.2 CPU and CPU Caches Power Model

To estimate the power of CPU and CPU caches, we cannot rely on built-in power estimation
tools of EDA suites since we typically cannot access the hardware source code for today’s
CPUs from AMD, Intel, and ARM. Therefore, we do not know the signals within the CPU
or its caches and have no way of collecting signal activities in order to estimate dynamic
power at gate-level using one of the power models presented in the prior section. Instead,
we switch to black-box power models that rely on higher-level metrics, namely performance
monitoring counters, for estimating dynamic power

Previous work explored building linear regression-based power models that estimate the
power draw of CPU and CPU caches by using the CPU’s performance monitoring counters
(PMCs) as input [10, 47]. These count, for example, the number of retired instructions, cache
misses or hits, and non-halted cycles. They are quite accurate with the authors reporting
a 1.5% and 3.8 % error across different workloads, respectively. The approach is to build
these directly from the physical target CPU by executing a wide selection of open-source
benchmarks and periodically logging PMCs, as well as power consumption. The resulting
linear regression models take the CPU’s PMCs as in- and output an estimate for the power
draw. For AC/DSim, we simulate the CPU though, and the simulator we use, namely
gems [6, 26], does not provide the performance monitoring counters that these models
require. Instead, we rely on GemStone [46], which is an extension of [47]. GemStone uses
the power models built using the approach presented in [47] and finds gem5 performance
statistics that correlate well with the CPU’s PMCs, which it then uses instead of the PMCs
as the power model’s inputs.

Again, GemStone builds the linear regression power model using PMC and power
measurements from the actual CPU that we want to model. To estimate power, however,
we run the same workload in gems and use gems performance statistics in place of the
selected PMCs as input to the linear regression models. The GemStone authors found some
of gems’s performance statistics to be inaccurate and eliminated their corresponding PMCs
from the PMC selection process while building the power models. Overall, their final linear
regression model for an ARM Cortex A15 achieves a 10 % mean average percentage error
(MAPE) for the power estimation when compared to actual CPU power measurements
across a wide range of workloads.

2.3 FULL-SYSTEM SIMULATION

CPU Cores]7Load/ Storeﬁ){ Last-Level Cache }*Cache Mi334>[Host Memory ’ Host
MMIO DMA/

PCle-attached HW
Accelerator

Figure 2.1: The components of a simple heterogeneous system. The CPU can offload computations
to a PCle-attached accelerator. During execution, components send requests to other
components in the direction of the arrows and receive data responses in the opposite
direction. We call CPU, its caches, and the host memory host.

2.3 FULL-SYSTEM SIMULATION

After introducing the power models we use in this thesis, we now present how we feed
them with accurate workload information for dynamic power estimation by simulating
full systems using SimBricks [24], which efficiently connects and synchronizes existing
simulators for individual components into a full-system simulation. In this virtual system
representation, we can boot Linux and run the actual software, including device drivers and
workload application, and log all information the power models require.

2.3.1 Simple HW Accelerator System: Important Components and their Interactions

We first give a rough overview of important system components and interactions between
them using a simple heterogeneous system as an example, before introducing how we
simulate such systems. We show this simple system in Figure 2.1. It contains a CPU together
with its caches, host memory, and a HW accelerator.

During regular software execution that doesn’t involve the hardware accelerator, the CPU
issues load or store requests to its cache hierarchy. If these requests miss in the caches,
the last-level cache (LLC) will forward them to the host memory. If, however, workloads
involve computations offloaded to the accelerator, the driver is at some point invoked by
the workload and issues Memory-Mapped 1/O (MMIO) requests to the accelerator to read
or write its control registers and thereby program it. Once the driver sends a start signal
via MMIO, the accelerator begins execution and sends read and write requests to the host
memory to retrieve input data or write back results. For this, it uses a mechanism called
direct memory access (DMA).

An alternative design used in today’s heterogeneous systems since caches are no longer
a scarce resource, is hooking up the accelerator to the LLC. This helps with throughput
and latency, especially for non-sequential memory accesses. Another upside is that this
means the driver need not flush the CPU caches when invoking the accelerator after having
written input data to DMA memory regions. We do not consider DDIO for our prototype
implementation of AC/DSim for a concrete heterogeneous system we present in Section 4.1
but want to stress that this is not a limitation of our framework.

7

BACKGROUND

gem5 Process

> [
Host HW Accelerator
J PCle L xsim Process

Figure 2.2: The instantiation of the simple heterogenous system from Figure 2.1 in the full-system
simulation framework SimBricks (_‘ ,)- SimBricks connects the two simulator processes
by forwarding requests and responses via shared memory queues and synchronizing the
two simulators.

2.3.2 Assembling Full-System Simulations with SimBricks

To simulate a simple heterogeneous system such as the one shown in Figure 2.1, we rely
on SimBricks [24] as it allows us to modularly combine simulators into a virtual testbed
containing all hardware components and which can run the whole software stack including
operating system, drivers, and workload applications.

Concretely, SimBricks connects battle-tested simulators for individual system components
at natural boundaries like PCle and Ethernet. In our case, the accelerator is attached to the
host via PCle, which SimBricks models at the transaction level. In the SimBricks abstraction,
MMIO and DMA are simple read and write requests that can be sent in both directions.

SimBricks runs simulators as individual processes and exchanges messages between them
via shared-memory queues. Figure 2.2 shows the instantiation of the simple heterogeneous
system presented in the prior section in a SimBricks full-system simulation. For read
requests from simulator A — B, for example, SimBricks sends a message from A — B. Once
B fetched the data, SimBricks, sends a message containing the data back from B — A.

SimBricks connects different simulator types, for example, event-driven like our host
simulator, and cycle-accurate, like the RTL- and gate-level simulators we use for the hard-
ware accelerator. While doing so, every simulator retains its internal notion of a clock. For
meaningful performance measurements, SimBricks synchronizes these clocks of individual
simulators. SimBricks” synchronization mechanism is in-band by sending special messages
in the shared memory queues. It also exploits link latencies to avoid costly lock-step syn-
chronization while remaining fully accurate. This is very efficient. The authors of SimBricks
authors showed that the synchronization overhead over the simulators” inherent already
slow simulation speed is negligible. Still, the slowest simulator dictates the simulation speed
of the full system, which is going to be an important consideration during our evaluation in
Chapter 5.

SimBricks is straightforward to scale. To simulate larger systems like the one shown in
Figure 2.3, which involve multiple hosts, and a network that connects them, SimBricks
simply runs more simulator processes. Thanks to SimBricks” synchronization slack, the
individual processes can all simulate in parallel, given enough CPU cores. Overall the
slowdown when simulating a larger system is therefore negligible. [24]

For more technical detail on how SimBricks connects component simulators, have a look
at the SimBricks architectural overview in its documentation [28]. Next, we offer more detail
on the simulators we use to simulate hosts and the hardware accelerator, as well as the
workload information these provide.

2.3 FULL-SYSTEM SIMULATION

]]
Client Network Server HW Accelerator
Ethernet

@
’]

Ethernet

Figure 2.3: A larger heterogeneous system that involves multiple client hosts that send requests to
a server host over the network. For faster and more efficient computations, this server
uses a PCle-attached accelerator. An application of such a system is mobile clients
requesting machine learning inference from a backend server. To simulate such a system,
we run individual simulator processes for every component shown in this figure and use
SimBricks to connect them via natural boundary protocols like Ethernet and PCle.

gem5 Process

[j ns-3 Process

xsim Process

2.3.3 Host Simulation

We use gems [6, 26] to simulate the host, which spans CPU, its caches, host memory, and
disk drives. This is the most accurate host simulator that SimBricks already supports and
is widely used in research and industry as it is open-source and allows simulating x86,
ARM, and RISC-V CPUs together with cache hierarchies and host memory. It also models
host-level interconnects like the memory bus, to which all components attach that need
to access the memory. All this is highly configurable, and gems comes with in- and out-
of-order models for the CPU to allow matching arbitrary platforms. On the flip side, all
this configurability also introduces risk for the user to introduce modeling errors, which is
something that is going to come up during the evaluation in Chapter 5 again.

gems supports booting unmodified Linux off a provided disk image and therefore enables
us to run the complete software stack for our workloads, including the driver. For accurate
performance measurements with gems, we must correctly specify parameters for CPU
pipeline, cache, interconnects, and the memory.

To collect accurate workload information, we instruct gems to periodically dump execu-
tion statistics. We show an excerpt of such a dump in Listing 2.1. Aside from the current
virtual timestamp (simSeconds) and the number of CPU cycles executed (system.cpu_cluster
.cpus0.numCycles), this dump contains very detailed statistics, for example, the number of
integer instructions decoded in the fetch2 pipeline stage (system.cpu_cluster.cpus@.fetch
2.intInstructions) or the number of accesses to the L1 DCache (system.cpu_cluster.cpus0.
dcache.overallAccesses::total). We use a few of the execution statistics gems provides as
input to our CPU power model. More information on that in Chapter 4.

2.3.4 HW Accelerator Simulation and Power Estimation

For the simulation of the hardware accelerator, we rely on Vivado’s [1] built-in RTL- and
gate-level simulator called xsim. For power estimation, we also rely on the Vivado toolchain
by using its built-in power estimation tooling [2]. We briefly introduce both in this section.

Concretely, we use xsim to collect signal switching activities at gate-level, allowing us to
invoke Vivado’s most accurate power estimation model, which runs after place-and-route [2].

9

10

N o AW R

o]

10

11

BACKGROUND

simSeconds 0.101460 # Number of seconds simulated (Second)

[...]

system.cpu_cluster.clk domain.clock 833 # Clock period in ticks (Tick)

[...]

system.cpu_cluster.cpus0.numCycles 1703943 # Number of cpu cycles simulated (Cycle)

[...]

system.cpu_cluster.cpus0@.commitStatsO.committedInstType::total 894948 # Class of
committed instruction. (Count)

[...]

system.cpu_cluster.cpus0.fetch2.intInstructions 332326 # Number of integer
instructions successfully decoded (Count)

[...]

system.cpu_cluster.cpus@.dcache.overallAccesses::total 248088 # number of overall (
read+write) accesses (Count)

Listing 2.1: An excerpt of a gems stats.txt file showing various statistics collected during workload
execution. These statistics are very detailed, containing information about pipeline stages,
cache accesses, etc.

For this, we have two key requirements. First, the hardware accelerator’s RTL code needs to
be available. Second, it needs to be fully synthesizable without timing violations for all clock
speeds we want to evaluate. Timing violations can lead to errors during computation when
deploying the synthesized design on a physical FPGA. Concretely, we use the so-called
post-synthesis functional simulation for xsim. Post-synthesis means that xsim uses a Verilog
Netlist produced during Vivado’s synthesis process, in which RTL constructs are replaced
with logic resources available on the FPGA or, in other words, the analogous concept of
gates on an FPGA. It is also possible to run the gate-level simulation place and route, which
is called post-implementation functional simulation. We verified that this does not produce
a number of signals matched when invoking the power model though. In fact, when using
post-implementation functional simulation, we run into problems due to optimizations. The
reason is that we do not attach to the synthesized design at the top-level, which we explain
next.

To deploy a hardware accelerator to an FPGA, we need to put additional IP blocks around
it. In the case of SoC-based AMD Xilinx FPGAs, the top-level IP block represents the rest of
the SoC, which exposes connections for MMIO and DMA to the hardware accelerator. It
does not provide unconnected wires that we can use to drive these though. For AMD Xilinx
PCle-based FPGA cards, the highest level IP block is a PCle endpoint IP, which has wires to
connect to PCle sticking out. We also do not want to drive PCle, so instead, for simulation of
the accelerator, we a few levels into the topology, allowing us to interact with the accelerators
and its wires sticking out directly. This does not work with post-implementation functional
simulation though as some signals are short-circuited during optimization to reduce routing
resources required. If we do not attach at the top-level signals, which will remain intact,
this leads to broken behavior of the hardware accelerator.

We can dynamically execute commands in xsim to write signal activities for the whole
testbench to a file using the specifically optimized SAIF format. For our implementation in
Chapter 4, we rely on this feature to dynamically execute commands to sample workload

2.3 FULL-SYSTEM SIMULATION

information. SAIF, in contrast to VCD waveform files, does not log the value of each signal
for every clock cycle but contains exactly 5 counters per signal. The three most important
include the amount of time the signal had a value of o, the amount of time the signal had a
value of 1, and the number of signal transitions.

11

DESIGN

After providing the necessary background in power, energy, hardware power models, and
full-system simulation in Chapter 2, we now present the design of our full-system power
and energy estimation framework AC/DSim (A(C#). We focus on how we provide
accurate workload information to power models using full-system simulation, which means
users don’t have to model workloads themselves. Our approach is modular, so given suitable
power-model-simulator combinations, users can plug in power models that best suit their
use case. In Chapter 4, we then discuss a concrete instantiation of our framework to estimate
energy and power for a physical system.

3.1 DESIGN GOALS
Before diving into our framework’s design, we present the goals we aim to achieve.

FULL-SYSTEM. We aim to estimate the energy usage of the whole system, considering all
significantly energy-using components. Aside from hardware components, this includes
software like kernel, drivers, and applications running in the system.

MODULAR. We want to make it easy for the user to swap out power models for system
components or include additional models. This also includes the simulators we use to
provide workload information.

ACCURATE. Full-system and individual hardware components” energy and power esti-
mates should be accurate compared to the physical system to be reliably used to explore
system- and component-level design choices and their energy performance trade-off.

SCALABLE. We aim to enable energy and power estimation of large-scale systems com-
prising multiple hosts with complex network topologies and many hardware accelerators.

3.2 HIGH-LEVEL OVERVIEW

With the goals defined, we now provide a high-level overview of the design of AC/DSim,
which we also sketch in Figure 3.1. The end goal of applying our framework is to produce
a full-system power time series that we can use together with Equation 2.1 to compute
a full-system energy estimate. For this, we combine multiple power models from prior
work to get power estimates for a subset of the system’s components each. Then, during
post-processing, we sum these individual estimates into a full-system estimate.

Power models from prior work can span one component, for example, the hardware
accelerator [2, 7, 42, 44], or multiple like CPU cores and caches [46, 47], or even the complete
mainboard with CPU, memory, caches, etc. [10]. For accurate individual power estimates,

13

14

DESIGN

>

System & Workload
Configuration

(9
End-to-End
Performance

Full-System
Simulation

Workload Information Workload Information
Samples 1 Samples 2

[Power Model A] { Power Model B] Post-Processing %

A A Full-System
l l Power & Energy
Power Time Series A Power Time Series B
|

Figure 3.1: High-level overview of our framework’s steps to compute full-system power and energy
estimates. First, we run a full-system simulation that collects workload information sam-
ples, which we then feed into power models that span one or more system components
to compute power time series. Finally, during post-processing, we sum the individual
time series into a full-system power time series and full-system energy estimate.

we must consider dynamic power (see Section 2.1.1), which means we must supply the
power models with workload information. We collect this workload information using a
SimBricks [24] full-system simulation. This simulates all the system’s hardware components
and the interactions between them. Further, inside this virtual testbed, we run the complete
and unmodified software stack, including Linux, drivers, and applications. Consequently,
users don’t need to model any part of the workload to extract workload information.

We periodically sample workload information from the simulators used for the full-system
simulation to retrieve a power time series. After the full-system simulation is completed, we
estimate power by invoking the per-component power models and feeding them with the
collected workload information samples. We use exactly one workload information sample
to compute one power estimation sample. This yields a power time series per power model.
Ultimately, we sum all individual time series into one full-system power time series. Notably,
individual time series remain available to enable inspection of how power is divided among
components. Finally, we can easily compute full-system energy usage from the individual
or full-system power time series using Equation 2.1. In this chapter, we do not discuss the
details of invoking the individual power models and producing power time series since this
depends on the combination of the concrete power model and simulator. Instead, we refer
to Chapter 4.

3.3 DESIGN ASSUMPTIONS

3.3 DESIGN ASSUMPTIONS

To be able to apply AC/DSim for estimating the power draw and energy usage of a
heterogeneous system, we need to fulfill the following assumptions.

1. Compatible power model and simulator combinations. We supply power models with
workload information from a SimBricks full-system simulation. For this, we require
that for every power model, we can find a combination of simulators used in the full-
system simulation, where the simulators supply all workload information expected as
input.

2. Power models only use workload information independent of the sampling window length.
This is a pre-requisite to sample workload information and invoke the power models
multiple times to compute a time series. Whether the workload information was
collected for a larger or shorter sampling window must not matter. The workload
information should, therefore, be expressed in rates, relative numbers like percentages,
etc.

3. Simulators record workload information independent of the sampling window length. This goes
hand-in-hand with the previous assumption. Often, workload information dependent
on sampling window length can be pre-processed before invoking the power models
to remove the dependency. We discuss this further in Section 3.5.

4. Power models are disjoint. We combine individual estimates from power models into
full-system estimates by summing. For this, we require that power models don’t
overlap in the hardware components they cover.

5. Simulation and power models have been validated against a physical testbed. In general,
simulation is a model of a physical system and is therefore prone to modeling errors.
The same goes for the power models. We aim to show our framework’s feasibility and
therefore regard tuning simulation and power models to high accuracy as orthogonal
work.

3.4 COLLECTING WORKLOAD INFORMATION IN A FULL-SYSTEM SIMULATION

We collect the workload information necessary to accurately estimate dynamic power by
simulating the complete system, including all hardware and software components, in a
SimBricks full-system simulation. As input to the full-system simulation, the user provides
the system and workload configuration in the form of Python scripts. The system configuration
specifies the hardware components, how they are connected, their configuration parameters,
and which simulators to use for each component. Meanwhile, the workload configuration is
concerned with the software side, i.e., which disk image to boot and which shell commands
to run.

A nice property of simulation is that, although collecting detailed information may slow
down the simulation, the behavior of the simulated system remains unaffected. Aside from
this, the workload information existing simulators output is very detailed, even surpassing
what is possible to observe in a physical system. Cycle-accurate gate-level simulators, for

15

16

DESIGN

example, allow logging all signals in a design down to the level of individual logic resources
or gates (see Section 2.3.4).

Our framework inherits the modularity of SimBricks. Either SimBricks already supports
simulators that provide the necessary workload information for the power models used,
or we can add additional simulators to SimBricks that do. This requires writing a simple
adapter that translates the simulator’s API into a SimBricks boundary protocol like PCle,
Ethernet, etc. This is out-of-scope for this thesis, but for more information, refer to SimBricks
Developer Guide - Architectural Overview [28]. For power models we do not consider in this
thesis, we are optimistic that they can be integrated into our framework since they only
depend on a simulator that can provide the necessary workload information.

3.5 SAMPLING POWER ESTIMATES

The central technique used in our framework’s design is the sampling of workload informa-
tion at simulators. Workloads vary over time, and so does their usage of hardware resources
and, thereby, power draw. Similarly to periodic measurements with a power sensor, we
invoke the power models multiple times to provide us periodic estimates with respect to
virtual time.

The user chooses the sampling frequency Fyppring = m
pute a power sample for timestamp ¢, we use the workload information from the sampling
window (t — Tsampling, t]. To collect the workload information samples, we instruct the sim-
ulators used in the full-system simulation to log workload information every sampling
period Tsampling. This is where our design assumptions 2. and 3. (see Section 3.3) come in
since for this sampling of workload information to work, we need that power models only
use workload information that is independent of the sampling window length, like rates or
percentages. Additionally, simulators also need to produce workload information that is
independent of the sampling window length.

However, given unsuitable workload information produced by a simulator, we can often
pre-process it before feeding it into the power model to make it adhere to assumption
3.. For example, as we can see in a gems workload information dump in Listing 2.1, the
simulator provides only a cumulative counter of executed CPU instructions since the start of
the simulation, which violates assumption 3.. However, we can transform it into a suitable
workload information metric by using the virtual timestamp, also part of this dump, thereby
getting rid of the dependency on time. By comparing the timestamp of the previous dump
tn — 1 with the one of the current dump ¢,, and using the number of CPU instructions from
the previous dump x,_; and from the current dump x,, we can calculate the rate of CPU

instructions executed per second for the current sampling window using x = ’;"%f"*ll
n n—

. Assuming we want to com-

IMPLEMENTATION

After discussing the design of AC/DSim, we now describe how we implement full-system
energy estimation for a simple heterogeneous system, which we also use for evaluation.
We show how we collect the workload information samples from the selected simulators.
Further, we highlight the implementation challenges we faced and how we partially solved
these, such as very slow gate-level simulation. We conclude the chapter by showing how we
combine the individual power models’ time series into a full-system time series, taking into
account that the timestamps of power estimation samples do not necessarily align.

4.1 OUR FPGA SOC BASELINE SYSTEM

We now introduce the simple heterogeneous system, for which we estimate energy usage
using our framework. This system closely follows the one shown in Figure 2.1 and is based
on a physical FPGA SoC board, which we use to evaluate accuracy in Chapter 5.

Unfortunately, we could not access any open-source and manufactured ASICs that could
serve as a physically measured baseline while prototyping our framework. For this reason,
we decided to target FPGAs, which, as discussed in Section 2.2.1, have similar power
models to ASICs in the sense that both are integrated into EDA toolchains and both rely
on signal activities as workload information for their power models. Concretely, we use an
Avnet Ultrag6-V2'. This SoC features four ARM Cortex-A53 in-order cores, a rather small
FPGA with 154K system logic cells, and 2 GB of LPDDR4 memory. The limited feature set
makes it a good fit to prototype our framework though. The SoC is relatively simple and
heterogeneous, which means we can already test combining two power models, concretely,
one for CPU and caches, and a second one for the FPGA. On the FPGA, we deploy an
open-source hardware accelerator, which makes the system heterogeneous.

The SoC’s board features independent power sensors for the FPGA, CPU, and host
memory. However, their sampling frequency is very limited. We empirically determined
that we can reliably sample with sampling periods as short as 8oms. We do so by reading
from Linux character device files, which the driver exposes. We can actually read these
more often, but this will not provide a higher temporal resolution than roughly 8oms. In
fact, when sampling more often, the measurements seemed to lose temporal resolution and,
sometimes, did not output values that corresponded to the workload we ran.

The accuracy of the power sensors is limited, although fine for our use case. The values
in the Linux character device files use a fixed-point representation with 5 bits of precision
after the decimal point With this, we get an accuracy up to 27° = 0,03125 W

In terms of high-level components and how they are connected, this FPGA SoC looks
almost like our simple heterogeneous example system from Chapter 2, shown in Figure 2.1

https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board- families/ultra96-v2/ (Re-
trieved Dec 1, 2024)

17

https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/

IMPLEMENTATION

The only difference is that on our physical system, the FPGA is connected via an Advanced
eXtensible Interface (AXI) [5] instead of the PCle bus to the host though.

At the transactional level of the PCle protocol, there is no fundamental difference. The
CPU still uses MMIO to read and write control register of the accelerator deployed on
the FPGA And for accessing host memory, the accelerator also uses DMA, just like in the
example system. SimBricks does not support the AXI protocol as a boundary between
simulators yet. Due to the high-level similarities, we can instead just represent this AXI bus
as a PCle bus in simulation More on that in the next section, where we discuss how we
represent the SoC in a SimBricks full-system simulation

4.2 SIMULATING THE FPGA SOC BASELINE SYSTEM

Our framework relies on SimBricks full-system simulation to collect the workload informa-
tion necessary when invoking per-component power models. We introduced SimBricks in
Chapter 2 in Section 2.3.

For the simulation of the host, which spans CPU, caches, host memory, and disk drives,
we rely on gems5 (see Section 2.3.3 Meanwhile, we simulate the FPGA using Vivado xsim
(see Section 2.3.4). Figure 4.1 provides an overview of all pieces involved in the full-system
simulation. We now discuss these and highlight differences between the FPGA SoC board
and the virtual testbed provided by the full-system simulation.

To simulate our FPGA SoC baseline system, we needed to make a few additions to
SimBricks. So far, SimBricks has not been set up to run ARM simulations. This is not a
fundamental limitation since gems can simulate ARM CPUs. Mainly, SimBricks did not
support building ARM disk images, and there was no gems ARM configuration script that
integrated with SimBricks. We added both and will upstream our additions. For now, we
publish our additions to SimBricks* and gems53 on GitHub.

We based our gens configuration script on existing ARM example scripts and the existing
SimBricks configuration script for simulating x86 hosts. For the CPU model, we selected
gems’s HPI (High-Performance In-order) model, which is tuned to be representative of
modern in-order Armv8-A implementations. We further verified that cache sizes and
their associativity match the ARM Cortex-A53 of our physical FPGA SoC. Unfortunately,
there was no pre-defined memory configuration that matched our LPDDR4 configuration,
so we just went with the same configuration that the ARM example scripts also use
(DDR4_2400_4x16). We decided against further steps to make the gems configuration
closely match our physical host since our goal for this thesis is to show the feasibility of
AC/DSim. We therefore regard tuning the simulation and power models to high accuracies
as orthogonal, which we also reflect in the design assumptions presented in Section 3.3.

To simulate the hardware accelerator deployed to the FPGA, we rely on Vivado’s in-
tegrated RTL- and gate-level simulator xsim (see Section 2.3.4). Even though SimBricks
supports RTL-level simulation using Verilator [39], it does not integrate xsim yet.

Open-source hardware accelerators often expose top-level AXI [5] ports [4, 16] for inter-
facing with other hardware or system components. Therefore, we developed reusable AXI
adapters that connect to these ports and translate AXI off the wire into the SimBricks PCle

2 https://github.com/jonas-kaufmann/simbricks/tree/j-ma
3 https://github.com/jonas-kaufmann/gem5/tree/j-ma

https://github.com/jonas-kaufmann/simbricks/tree/j-ma
https://github.com/jonas-kaufmann/gem5/tree/j-ma

4.2 SIMULATING THE FPGA SOC BASELINE SYSTEM

boundary protocol and vice versa. For example, we read AXI DMA requests issued on the
accelerator’s top-level ports and turn them into SimBricks PCle read or write requests. For
the translation, we need to call C/C++ functions from Verilog, pass the values of Verilog
signals to C/C++, and return values from C/C++ we want to apply in Verilog. This is
possible via the SystemVerilog Direct Programming Interface (DPI) extension.

All this is completely transparent to the host simulator, meaning we don’t have to change
anything there. Our AXI to PCle adapters don’t handle synchronization between simulators
though, which is required for the accurate simulation of interactions between individual
simulators and the components they model. We implement this synchronization ad-hoc
per accelerator in 40 lines of code total across Verilog and C/C++. We publish the Vivado
integration on Gitlab#.

SimBricks allows us to set a constant latency at simulator boundaries per direction
independently. We empirically determined the AXI latency of the FPGA SoC to be roughly
250ns one-way and tuned the SimBricks PCle latency to reflect this Further, our AXI to PCle
adapters can accept multiple DMA requests in parallel, which the accelerators we consider
do in fact make use of [4, 16] to hide host memory access latencies. Again, we empirically
determined that our FPGA SoC can manage up to 16 pending AXI DMA requests and
enforce the same limit in our AXI to PCle adapters.

Software-wise, the physical FPGA SoC board runs PYNQ?3, which is an AMD Xilinx
project aimed to make it easier to use their heterogeneous SoC platforms. PYNQ is based on
Ubuntu 22.04. We deliberately don’t run the same software in simulation as, for example,
after boot, PYNQ starts a Jupyter Notebook server among other things, which means we
would waste time simulating software we do not need. Instead, we build our own disk
image based on an Ubuntu 24.04 minimal cloud image. Unfortunately, Ubuntu does not
offer an ARM64 minimal cloud image for Ubuntu 22.04, which is why we had to use a
newer version Although the versions of installed packages are different, we don’t expect
much influence from this on power draw or performance because, other than that, we run
the exact same workload software in simulation that we also deploy to the FPGA.

For the hardware accelerator driver, we use slightly different implementations for per-
forming MMIO in simulation and the FPGA SoC board. In the simulation, we use Virtual
Function I/O (VFIO)®, whereas, on the physical board, we just write to a physical address
directly via the /dev/mem character device file. We expect the effect on accelerator invocation
latency to be minimal since the control registers are only used for one-shot configuring the
accelerator before invocation and while polling for its completion

4.2.1 Speeding Up Gate-Level Simulation

While trying out the first simulations, we ran into the problem that gate-level simulation
is practically too slow to support simulating a workload only running for a second of
virtual time. We observed a greater than 1’000’000 times slowdown over real-time for the
full-system simulation, when using gate-level hardware simulation. This means having

4 https://gitlab.mpi-sws.org/jkaufman/jpeg-decoder-vivado-files
5 http://www.pynq.io/ (Retrieved Dec 1, 2024)
6 https://docs.kernel.org/driver-api/vfio.html (Retrieved Dec 1, 2024)

https://gitlab.mpi-sws.org/jkaufman/jpeg-decoder-vivado-files
http://www.pynq.io/
https://docs.kernel.org/driver-api/vfio.html

20

IMPLEMENTATION

gemb Process

{ Memolry Bus]—[Host Memory]

CPU 10 Bus Disk Drive

[£, PCle Adapter]

o
Shared Memory

e N\
%, PCle to Verilog Verilog T] Verilog DMAAX Verilog Verilog AXI to &,
AXI Adapter AXI Port HW Accelerator Port AXI PCle Adapter

\ J

Vivado xsim Process

Figure 4.1: The representation of the baseline FPGA SoC board in a SimBricks full-system simulation.
We use gems to simulate the host and Vivado xsim to simulate the FPGA. To connect
the hardware accelerator deployed on the FPGA to the host, we use adapters that
use SystemVerilog DPI to translate AXI transaction off the wire into SimBricks PCle
transactions and vice-versa. On the gems side, SimBricks provides an adapter that acts
as a simulator-native PCle device and exchanges SimBricks PCle boundary protocol
messages with the FPGA-side adapters through shared memory queues.

to simulate for 12 days for just a second of virtual time and in reality, the slowdown we
observed was even higher.

During our experiments, we observed that the hardware accelerator is often only active
for a fraction of the time, concretely up to 250 ms for the workloads we look at during our
evaluation (Chapter 5). We can therefore optimize simulation speed by only simulating the
hardware accelerator when it is actually in use. For this, we add a pseudo-synchronization
mode to the hardware accelerator simulator. When pseudo-synchronization is active, the
simulator still advances the virtual timestamp that it exposes through the SimBricks mecha-
nism to other simulators and still synchronizes with connected simulators, but it does not
evaluate the hardware accelerator. So even though it looks like the hardware accelerator is
advancing time to the outside, the simulator itself is paused. This is a non-intrusive addition,
which is fully transparent to other simulators.

To toggle the pseudo-synchronization mode, we need knowledge about when the acceler-
ator is active. Since this is hard to predict before running the full-system simulation, we
expose this control inside the simulation itself. gems has a similar mechanism, where a
read or write to special physical addresses on the host controls, for example, the periodic
logging of workload information. Here, we must send a similar signal to the hardware
accelerator simulator through the SimBricks PCle channel. The easiest way to do so is by
exposing another PCle base address register (BAR) just for simulation control. The hardware
accelerator’s driver is the best place where to make use of this simulation control since it
is invoked when the workload requests accelerator service since it is the closest piece of
software to the hardware accelerator that has knowledge of its semantics. So we modify the

4.3 ESTIMATING ENERGY OF THE FPGA SOC BASELINE SYSTEM

driver to disable pseudo-synchronization just before starting the accelerator. And after the
accelerator finishes, the driver enables pseudo-synchronization again.

4.3 ESTIMATING ENERGY OF THE FPGA SOC BASELINE SYSTEM

To estimate the energy of our FPGA SoC baseline system, we mix two power models for
CPU / caches and the hardware accelerator. These two components consume the most
significant amount of energy when measuring our physical system.

4.3.1 FPGA Power Estimation

For estimating the power consumption of the FPGA, we use power estimation built into
AMD Vivado. We briefly introduced the necessary background for this in Section 2.2.1 and
Section 2.3.4.

This type of power estimation is convenient to use. We feed our hardware accelerator’s
RTL code into the synthesis tool (Vivado) and run it until place-and-route. This allows us to
estimate power using the placed and routed design, which requires accurate signal activities
collected in the gate-level simulation for accurate estimates.

To collect these signal activities, we instruct Vivado xsim to write SAIF files, which are
optimized to capture these. To sample signal activities, we use a TCL script that runs the
simulation for one sampling period, dumps the SAIF file, resets the switching activity
counters for all signals, and repeats this process.

The sampling period controls a trade-off between the amount of data logged and accuracy.
Smaller sampling periods (higher sampling frequencies) are better capture fine-grained
dynamic differences in power draw since the workload statistics represent an average over
the sampling window. However, longer sampling periods (lower sampling frequencies) log
fewer samples and, therefore, require less disk space. Further, since the power model is
applied after the simulation, less samples also means that post-processing to compute the
power time series is faster.

When using the pseudo-synchronization introduced in Section 4.2.1, we do not have
power estimation samples until the accelerator is invoked. In a real system, the accelerator
still draws static power though. We close this gap by briefly running a standalone xsim
gate-level simulation of the accelerator, where we don’t stimulate any of the accelerator’s
inputs besides the clock signal. This yields signal activities we can use to estimate idle
power. While computing the power estimation time series for the FPGA, use this idle power
draw during timespans where pseudo-synchronization is active.

4.3.2 CPU and CPU Caches Power Estimation

For the CPU power model, we use GemStone [46], which we introduce in Section 4.3.2. We
initially planned to follow the GemStone methodology to build our own linear-regression-
based power model from our physical ARM Cortex-A53. The authors used a different board
with a 32-bit ARM Cortex-A15 compared to our 64-bit CPU. This meant we couldn’t reuse
their disk images, which would have already contained all workloads for training the linear

21

22

IMPLEMENTATION

2.00 1 —— CPU Measured 2.00 —— CPU Measured
1.75 4 CPU Estimated 1.75 4 CPU Estimated

1.50 1 1.501

—\

21251 /-~»__—_—/ \ 21251 TN e \
£ £
g 1.007 5 1.004 ﬁ

H H
L0754 5 \—-—-J 50754 ogralaeadodll, —

0.25 0.25
0.00 0.00

0 200 400 600 800 0 200 400 600 800 1000 1200 1400
Time in ms Time in ms

(a) resnet18-cpu (b) resnet34-cpu

Figure 4.2: Power time series for CPU and caches measured vs. estimated using the adapted
GemStone ARM Cortex-A15 power model. As a workload, we used TVM [3] running
ResNet [15] image classification models on the CPU.

regression model ready to run. Due to limited time, we had to abort chasing down the
sources Walker et al. used and getting them to cross-compile. Building an accurate power
model for the CPU is also orthogonal to our work, in which we aim to show the feasibility
of AC/DSim to combine existing simulators and power models to produce full-system
energy and power estimates.

Instead, we decided to reuse the A15 power model that Walker et al. provided along
with their paper on GemStone. Due to significant differences, we expect higher errors than
GemStone’s authors observed. Most prominently, the A15 is an out-of-order CPU, whereas
our As3 is in-order. Further, the A15 uses the 32-bit ARMv7-A instruction set compared
to the 64-bit ARMvS-A for the A53. In gems, we also use an in-order model for the CPU
instead of an out-of-order one like Walker et al. did. Together with updates to gems, this
means that the names of gems statistics changed across the board and possibly also their
semantics.

To adapt the existing A15 power model, we updated the map from PMC events to gems5
statistics to incorporate the changed gems statistic names. We further manually adjusted the
hard-coded voltage value and intercept until the power time series matched roughly what
we got on our physical FPGA SoC board when running a resnet34-v1 image classification
on the CPU only. More on these workloads in Section 5.2 in Chapter 5. We show the result
in Figure 4.2. We acknowledge using the same class of workloads to adjust the CPU power
model that we also use for our evaluation does inherently introduce overfitting issues. We
stress though that building an accurate and stable power model that works even for unseen
workloads is orthogonal to the goals of this thesis.

The GemStone authors also built a power model for a Cortex-Ay in-order CPU, which
draws significantly less power than our As3 at peak though. We tried to adjust it in a similar
manner but could not. When we pushed the Voltage too high, the dynamic power started
shrinking.

To feed the adjusted GemStone power model with accurate workload information, we
sample CPU and cache performance statistics in gems, which gems already fully supports.
gems provides the m5 binary to give software running on the simulated host access to
simulation control. Part of the functionality it provides is to reset the performance statistics
or dump them, along with an option to dump periodically. So just before the workload of

4.3 ESTIMATING ENERGY OF THE FPGA SOC BASELINE SYSTEM

interest starts, we invoke m5 to reset all statistics, create an immediate dump, which we use
as a marker in the full-system power time series, so we know when the workload started,
and instruct gems to dump statistics every sampling period

4.3.3 Post-Processing for Full-System Energy Usage

To produce a full-system power time series that we can use together with Equation 2.1 to
compute full-system energy usage, we cannot just sum up the individual power models’
time series because timestamps of the samples might not align. This happens because we,
for example, only start dumping workload information in gems once the workload of
interest starts to get a start marker and, similarly, stop dumping right after it finishes for
a stop marker. Further, we allow the user to configure the sampling frequency per power
model to trade off the amount of data collected and accuracy.

To solve this, we use constant interpolation (explained further down) to evaluate all
individual power time series at a common-denominator sampling period regarding the
sampling periods of all workload information involved. This allows us to simply sum
the individual into a full-system estimate since this yields power estimates for the same
timestamps across power models.

Concretely, we use 1 millisecond, allowing us to sum them into a full-system estimate,
but this is adjustable by the user. All workload information samples for the power models
we use are statistics, and represent averages over one sampling window. So given a power
model that provides power samples 10, 20, 30 ms, we assign the same value for every integer
millisecond in the range [0,9), [10,19), [20,29) using the sampled values at 10, 20, 30 ms,
respectively. We call this constant interpolation.

We only compute the full-system power time series for timespans, where all power models
provide samples. We call these timespans evaluation window and give an example using
two imaginary power models in Figure 4.3. While the workload of interest is running, we
assume that the user correctly set up all simulators and power models to provide power
samples. Therefore, we can discard power samples outside the evaluation window. Note
that the accelerator power model we use provides power estimates throughout the whole
workload duration since we inject the idle power draw when pseudo-synchronization is
active.

23

24

IMPLEMENTATION

Evaluation
Window
Samples Power Model A ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Samples Power Model B ‘ ‘ ‘
Full-System Samples ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Time >

Figure 4.3: Power models A and B have different sampling frequencies and start/stop sampling at
different timestamps. For computing the full-system power time series, we only consider
the evaluation window, where both power models provide samples, and use a common
denominator of all sampling periods as the evaluation sampling period.

EVALUATION

After outlining the implementation of AC/DSim for estimating power and energy of a
simple FGPA SoC board, we now evaluate its accuracy in terms of the full-system energy
estimate, as well as the overhead AC/DSim incurs both in terms of simulation speed and
storage.

5.1 EVALUATION QUESTIONS
Concretely, we aim to answer the following evaluation questions:

RQ1 Can AC/DSim modularly combine existing power models and feed them with
workload information to capture how power draw varies over time? (Section 5.5.1)

RQ2 How efficient is AC/DSim? Does AC/DSim incur simulation speed overhead due to
the collection of workload information? How much data does AC/DSim need to collect,
and how much time does it need for post-processing to produce the full-system energy
estimates and power time series? (Section 5.5.2)

RQ3 (Can AC/DSim accurately estimate the energy usage of a system design and therefore
enable meaningful evaluation of design choices when a physical testbed is unavailable?
(Section 5.5.3))*

* For RQ3, we only provide preliminary results due to limited time.

5.2 HW ACCELERATOR AND WORKLOADS

In this section, we present the open-source hardware accelerator we put on the FPGA and
the workloads we use to evaluate the heterogeneous system in terms of full-system energy
usage.

For the workload, use Apache TVM [3], an end-to-end machine learning compiler frame-
work for CPUs, GPUs, and hardware accelerators. TVM can run image classification using
popular deep neural networks like resnetso-v1 [15] either directly on the CPU or on a
hardware accelerator published along with TVM named Apache VTA (Versatile Tensor
Accelerator) [4]. Both TVM and VTA are fully open-source. Deep learning is a suitable
workload for evaluating our framework since even when using the hardware accelerator,
the CPU is still responsible for preparing the weights and inference data in memory. Some
layers of the neural network’s layers also still run on the CPU. This leads to non-trivial
interactions in between CPU, host memory, and the accelerator. Full-system performance
and energy usage are therefore not straightforward to predict with simple spreadsheet
models.

25

26

O 00N Ol kA WN R

[
@]

=
[

EVALUATION

The VTA accelerator is built to be deployed on an FPGA and offers configuration options
to, for example, tune the size of its general matrix-multiply unit. This would allow us
to deploy different hardware accelerator configurations and evaluate them in terms of
full-system performance and energy usage. In practice, only the default configuration fits on
the FPGA of our Avnet Ultrag6-V2 (more info on this board in Section 4.1 and we decided
to vary the clock speeds instead. 167.67 MHz is the fastest clock speed we can synthesize
before seeing timing violations.

TVM itself is a mixture of Python code for the frontend and C++ code for the backend.
The frontend is responsible for defining which model to run, which devices to use for the
inference, and to set up the input data. Meanwhile, the backend handles performing the
actual computations and compilation of models. Before we can perform inference for a
pre-trained model with TVM, we need to invoke the TVM compiler to produce a shared
library that contains the CPU and VTA instructions along with the model’s weights. We
compile all models beforehand so that the workload we measure only involves loading the
model’s shared library, loading and preparing the image to perform inference on, invoking
the actual inference, and finally, fetching and printing the inference results. We show the
output when running such an inference in Listing 5.1.

For evaluation, we use resnet18-v1 and resnet34-v1 as the inference models. The number
indicates the number of layers used. The lower the number of layers, the faster the inference
can be performed. We chose the two smallest resnetxx-vi variants because gate-level
simulation is generally slow. Simulating the accelerator for resneti8-v1 already takes days
on our machine.

The less power-accurate but faster alternative is RTL-level simulation of the accelerator but
when using Vivado’s xsim for that, the accelerator was broken. The developers of VTA used
Verilator [39] for testing and debugging, so the reason seems to be differences between how
Verilator and xsim interpret and run RTL code. We also cannot use Verilator since it cannot
write files optimized for storing signal activities (.saif). It can only write waveform files,
which are significantly larger in size and which we need to convert because Vivado’s power
estimation only supports saif. Due to limited time, we decided not to pursue RTL-level
simulation and evaluate using only gate-level simulation.

Rep 0: Requesting remote device 13212 125 ns
Rep 0: Sending and loading model 111 746_748 ns
Rep 0: Pure inference duration 642_302_235 ns
Rep 0: End-to-end latency: 876_776_378 ns

prediction for sample 0
#1l:tiger cat 9.03182315826416
#2:Egyptian cat 8.980079650878906
#3:tabby, tabby cat 8.906598091125488
#4:1lynx, catamount 6.521409511566162
#5:weasel 5.949103355407715

Listing 5.1: Terminal output of a TVM resnet18-v1 image classification inference when using only
the CPU for computing. The input image was a cat. Along with the classification labels,
TVM also outputs a value representing the certainty.

5.3 MEASURING THE PHYSICAL BASELINE 27

Sampling Frequency Mean CPU Power [mW] Std CPU Power [mW]

1Hz 585.07 8.59
10Hz 591.10 2.12
100 Hz 591.94 1.28
1000 Hz 592.43 2.11

Table 5.1: The power draw of our FPGA SoC board when idle and measuring power draw with
gemstone-profiler-logger using different sampling frequencies. We show the mean
power draw when measuring for 10 seconds, along with its standard deviation.

5.3 MEASURING THE PHYSICAL BASELINE

As the baseline to compare AC/DSim against, we use measurements from our physical
system based on an Avnet Ultrag6-V2, which we introduce in Chapter 4 in Section 4.1. We
now discuss how we use the GemStone framework to automatically run workloads, collect
the power measurements, and possible disturbing factors.

For measuring the FPGA SoC board, we rely on gemstone-profiler-logger, a C program
provided by the GemStone framework that periodically reads the sensors by accessing their
respective Linux character device files. For automating running and measuring workloads
on our FPGA SoC board, we use another GemStone tool called gemstone-profiler-automate,
which is a collection of Python scripts that use gemstone-profiler-logger to periodically
collect the measurements with low overhead. These scripts also include post-processing
to, for example, select the median run in terms of measured workload duration and write
all collected information in a CSV file for easy further processing. The number of runs to
perform is a command-line parameter when invoking one of the gemstone-profiler-automate
scripts. We modified both gemstone-profiler-logger and gemstone-profiler-automate and
publish our modifications on Github*

To be sure, we verify the low overhead claim of gemstone-profiler-logger by measuring
our FPGA board while idle using different sampling frequencies. For the workload, we
use sleep 10. We empirically determined that it does not make sense to collect sensor
measurements at a higher frequency than roughly 12.5 Hz because the the Linux character
device files are not updated more frequently than that. Still, we can read them at a higher
rate. We show the results in Table 5.1. In general, all power draw means are within a
standard deviation of the measurement for 1 Hz. The reason for 1 Hz showing a higher
standard deviation is the limited resolution of our power sensor. Concretely, all power
measurements either take the values 562.50 mW or 593.75 mW. The sensor cannot provide
values in between. We conclude that measurements using gemstone-profiler-automate have
indeed negligible overhead regarding power draw. For the evaluation of AC/DSim, we use
our empirically determined maximal sampling frequency of 12.5 Hz.

Another influence on the power draw of our physical board is temperature. Under load,
its temperature varies considerably as it only features a passive heatsink. GemStone can

Modifications to gemstone-profiler-logger and gemstone-profiler-automate: https://github.
com/jonas-kaufmann/gemstone-profiler-logger/tree/acdsim and https://github.com/jonas-kaufmann/
gemstone-profiler-automate/tree/acdsim

https://github.com/jonas-kaufmann/gemstone-profiler-logger/tree/acdsim
https://github.com/jonas-kaufmann/gemstone-profiler-logger/tree/acdsim
https://github.com/jonas-kaufmann/gemstone-profiler-automate/tree/acdsim
https://github.com/jonas-kaufmann/gemstone-profiler-automate/tree/acdsim

28

EVALUATION

take the temperature into account when estimating power draw. Vivado is generally also
capable of doing this. However, changing the junction temperature setting during power
estimation doesn’t influence the estimation for our concrete board. Therefore, we added a
fan, which is enough to keep the temperature close to constant when comparing idle and
load. To verify this, we sample the temperature alongside the power sensors.

Finally, we observe that the first run of a workload is always around 20 % slower than
the following runs. This has a significant effect on the system’s energy usage in the first
run. We expect the reason for this to be the filesystem and CPU caches that need to warm
up. To remove the influence of this and also try to minimize run-to-run influence, we
always execute and measure each workload 7 times, throw away the first two runs, and
then under the remaining, extract the median run regarding workload performance during
post-processing. We use this median run for performance, power and energy for the results
we report.

5.4 MEASUREMENTS WITH AC/DSIM

Similarly to measuring the physical baseline, we also take the effect of caches into account
when running our workloads in the simulation. To warm up the caches, we invoke the
whole workload application twice. For the first run, we don’t log anything and also don’t
invoke the accelerator to simulate faster. Invoking the accelerator would not influence the
caches since the accelerator accesses memory directly.

Further, SimBricks already handles minimizing run-to-run variance by replacing the init
script using the init kernel command-line parameter. We only load what is necessary to
run TVM and VTA. This approach is preferable over executing the workload multiple times
since that is costly due to already slow simulation speeds.

For the AC/DSim sampling frequency, we choose 10ms across all power models, which
is more accurate than the physical system’s measurements, while keeping the workload
information samples manageable (100 per virtual second).

5.5 RESULTS

In this section, we present the experiments we ran to evaluate AC/DSim and discuss the
results we obtained in the context of our evaluation questions (Section 5.1).

5.5.1 RQ1: Feasibility of Modularly Combining Power Models

For building AC/DSim, two of our goals are to modularly combine existing power models
and feed them with workload information such that we can produce full-system power
estimates, be able to break that down into individual components while also capturing the
influence on power draw of the software running in the system. To evaluate this, we ran 6
experiments in total, feeding the same image of a cat into resnet18-v1 and resnet34-v. We
perform the inference using either only the CPU or CPU + VTA. We present the power time
series that AC/DSim produces for the individual components and the full-system estimate
(CPU+FPGA) in Figure 5.1.

Power in W

Power in W

Power in W

2.00 A
1.754
1.50
1.254
1.00 4
0.75
0.50
0.25
0.00 -

= CPU+FPGA
—— CPU
—— FPGA

T T
400 600

Time in ms

T
0 200 800

(a) resnet18-cpu

2.00 A
1.754
1.50
1.254
1.00 4
0.75 A
0.50
0.25

0.00 -

= CPU+FPGA
—— CcPU
—— FPGA

NS A

l-\.r\IL:—u-

300 400 500 600 700

Time in ms

200

(c) resnet18-vta 100 MHz

2.00 A
1.754
1.50
1.254
1.00 4
0.75
0.50

0.25

0.00

== CPU+FPGA
—— CcPU
—— FPGA

Py

T T T T T
300 400 500 600 700

Time in ms

T T T
0 100 200

(e) resnet18-vta 167 MHz

Power in W

Power in W

Power in W

5.5 RESULTS

2.00 A
1.754
1.50 1
1.254
1.00 4
0.75 A
0.50
0.25
0.00

= CPU+FPGA

T T
0 200

T T T T
800 1000 1200 1400

Time in ms

T T
400 600

(b) resnet34-cpu

2.00 A
1.754
1.50 1
1.254
1.00 4
0.75
0.50
0.25

0.00 -

= CPU+FPGA
—— CcPU
—— FPGA

0 200

400 600 800

Time in ms

(d) resnet34-vta 100 MHz*

2.00 A
1.754
1.50 4
1.254
1.00 4
0.75
0.50

0.25

0.00

= CPU+FPGA
—— CcPU
—— FPGA

R | W

[~

T
0

T T T T T
400 500 600 700 800

Time in ms

T T T
100 200 300

(f) resnet34-vta 167 MHz*

Figure 5.1: The power over time estimated by AC/DSim for CPU-only and VTA-accelerated inference
using resnet18-v1 and resnet34-vi models. The red vertical line marks the point in time
when TVM invokes the accelerator. gems crashes before the workload completes for all
workloads that involve VTA. (*) The resnet34-vta workloads did not finish after more
than g days of simulation, so the power their power time series are cut off at the end.

29

30

EVALUATION

Note that for all experiments that use VTA, gems crashes close to the end. The CPU-only
workloads run all the way through. By comparing the simulation to our physical FPGA
SoC board, we verified that the accelerator finishes all computations. gems seems to crash
when TVM attempts to run one of the final layers on the CPU. From profiling the same
workloads running on the physical SoC board, we know that the part of the workload that
isn’t executed as a consequence would only take an additional duration in the order of 10s
of milliseconds though. We further discuss this when evaluating the accuracy of AC/DSim
compared to the physical baseline in Section 5.5.3.

Looking at the CPU-only inference without digging into the internals of how TVM
executes the models or comparing to measurements from the baseline physical system, the
pattern of the CPU’s power over time matches our expectations. First, the Python frontend
script for TVM connects to the RPC server and loads the shared library that represents the
compiled model. After invoking the model’s shared library, TVM first loads the weights
into memory. We call all this preparation phase. The preparation phase is single-threaded,
whereas the CPU performs matrix multiplications on all cores during actual inference.
During inference, we therefore expect a higher power draw than in the time before, which
shows up in the power time series, although we do not know at which exact point in time
the matrix multiplication starts to verify whether that indeed corresponds with the rise in
power draw. Moving on to VTA-accelerated inference, CPU-wise, we see roughly the same
power draw during the preparation phase, which likely rises after that due to the first layers
being executed on CPU. From our optimization to avoid paying the simulation slowdown
for gate-level simulation before the accelerator is invoked (Section 4.2.1), we know exactly
when the workload starts using VTA. As expected, the power draw of the virtual FPGA
rises the exact moment VTA is invoked.

Based on our observations, we answer RQ1 positively: AC/DSim can combine existing power
models and feed them with workload information to capture power varying over time.
Based on our understanding of the workload, the estimated power time series match the
power trends we expect, indicating accurate workload information.

5.5.2 RQ2: Estimation Efficiency

For RQ2, we evaluate the storage and computation overhead to run AC/DSim compared
to a SimBricks full-system simulation that doesn’t involve any AC/DSim additions like
collecting workload information. Further, we also quantify the post-processing overhead.
We note that since AC/DSim uses SimBricks as the basis, we cannot simulate faster or
consume less storage than a SimBricks simulation. Therefore, SimBricks is our comparison
baseline.

We first report the storage overhead since we need that while discussing our results on
simulation speed overhead. The storage size of the collected workload statistics depends on
the sampling frequency per component. Concretely, gems periodically dumps all statistics
into a text file. Meanwhile, xsim periodically writes an SAIF file. A single gems stats sample
is 252 KB. For VTA, a single SAIF file, regardless of clock speed, is roughly 48.5 MB. For
our experiments, we used a sampling frequency for both CPU and FPGA of 100 Hz. This
means that, in total, simulating one virtual second requires 4.875 GB of storage space, which
is very manageable. For xsim RTL-level simulations, the storage space required is even

5.5 RESULTS

Workload SimBricks Slowdown AC/DSim Slowdown Overhead
resnet18-cpu 3’001 3’012 0.36 %
resnet34-cpu 3’550 3’550 0%
resnet18-vta-100 7'070'294 10'291'565 45.56 %
resneti8-vta-167 10'917'214 16'740'019 53.34 %
resnet34-vta-100 5'933'606 11'340'959 91.13 %
resnet34-vta-167 9712335 17'659"776 81.83 %

Table 5.2: The simulation speed overhead when collecting the workload information we require for
AC/DSim compared to running an identical SimBricks simulation without collecting any
workload information. The slowdown factor for SimBricks and AC/DSim represents how
many seconds we need to simulate to advance the virtual timestamp by one second. The
overhead is computed as 4&/DSim Slowdown ‘6 (]ock frequency of VTA is the last number

) : SimBricks Slowdown o
in the workload name, i.e. 100 or 167, and is in MHz.

less since there are less signals to log due to the higher abstraction level. The storage
overhead increases proportionally with the sampling frequency and also increases for more
complex accelerators. Modeling additional components in gems, for example, adding cores,
also increases the space required, although the workload information for the hardware
accelerator is far more significant in comparison.

We now discuss the simulation speed overhead results, which we present in Table 5.2.
We ran all simulations for these results on a machine with 2x Intel Xeon Gold 6152 CPUs.
Starting with the CPU-only workloads, we see that AC/DSim has negligible overhead
over a SimBricks simulation. The same does not hold when also simulating the hardware
accelerator. First of all, due to our optimization of not simulating the accelerator before it is
invoked (Section 4.2.1), simulating up to the point of the accelerator’s invocation is as fast
as simulating the CPU-only workloads. In Table 5.2, we report the worst case when xsim
fully simulates the hardware accelerator at gate-level. In that case, gate-level simulation is
the bottleneck on the overall simulation progress with a higher than 1 million slowdown for
the SimBricks baseline already.

In practice, this means that simulating a single virtual second takes more than 11 days,
which rules out gate-level simulation for many workloads and also gave us a tough time
during the evaluation. This clearly highlights that gate-level simulation is the bottleneck
on overall simulation speed. Interestingly, the slowdown nearly doubles when collecting
signal activities for AC/DSim. This overhead does not come from the size of the SAIF files,
since these are in the order of 10s of Megabytes. Therefore, computing the signal activities
has to be expensive. Looking at the SAIF file contents, xsim writes four statistics for every
gate-level signal. We expect that these statistics have to be updated every clock cycle and for
every signal.

In practice, even when simulating on a Ryzen 7 6800HS, which has a significantly higher
single-threaded performance yielding roughly 3 times the simulation speed of the Intel
server, we still had to simulate for multiple days even for the slowest workload resnet18, in
which case the hardware accelerator was active for only 130 ms.

31

32

EVALUATION

Finally, regarding post-processing, the only part that takes significant time is repeatedly
invoking Vivado’s power estimation algorithms. For resneti8-vi and VTA running at
100 MHz, we have to process 15 SAIF files, which takes 452 seconds, which is roughly 30
seconds per SAIF file. So, similar to storage overhead, the post-processing time of AC/DSim
is proportional to the sampling frequency of the hardware accelerator. Further, the more
complex the hardware accelerator, the longer the power estimation in Vivado takes.

Based on our observations, we can answer RQ2: AC/DSim can efficiently combine existing
power models and simulators to simulate provide full-system performance and energy
/ power estimates, although, depending on the concrete simulators used, there can be a
significant simulation speed overhead for collecting detailed workload information.

5.5.3 (Preliminary) RQ3: Accuracy of Power and Energy Estimates

We now evaluate the accuracy of the component-level and full-system estimates that
AC/DSim provides. For this, we compare with measurements taken on the physical FPGA
SoC board (Section 4.1). We note that the results presented in this section are preliminary
since gems crashes and our gems configuration also involves a modeling error of the
FPGA SoC board, leading to significantly different durations for all hardware-accelerated
workloads.

We start by comparing the workloads” duration observed in simulation against what
we measure on our physical board. Errors here will also have an influence on the energy
estimate produced by AC/DSim. The concrete results are in Table 5.3. For the workloads
that only use the CPU, the error of the simulated duration is less than 10 %.

For workloads that involve VTA, the picture is more contrived. First of all gems crashes
right after VTA finishes computing the last layer it is responsible for. We briefly dug into
this and it seems that the CPU is sending cached accesses to the DMA region, whereas
the accelerator uses uncached accesses. This triggers an assertion in the cache model. The
fix is to map the DMA regions as uncached in the contiguous memory allocator we use.
We did not have the time to re-run simulations though. Still, We can collect all workload
information and measure the workloads” duration up until this crash. We measured the
duration beginning at the invocation of VTA until the workload’s end on our physical
FPGA SoC and observed 143 ms for resneti8-vi and 232 ms for resnet34-v1, irrespective of
accelerator clock speed. So the part of the workload that follows after the crash cannot take
longer than that. From the AC/DSim simulation, we know that the accelerator is active for
roughly 130 ms. So, even accounting for gems modeling errors, the missing part is in the
order of 10s of milliseconds.

Comparing the results for the individual workloads, we see that for AC/DSim, we
severely undershoot the actual workload execution time. As we just argued, this cannot
be explained by gems crashing while the workload is still running. We can rule out that
this originates from VTA since it is TVM invokes it significantly later after on our physical
platform compared to AC/DSim. The accelerator itself is invoked significantly later. In the
physical system, this happens 1050 ms into the workload, which is independent of clock
speed. Meanwhile, in simulation, TVM already invokes VTA after just 623 ms. This gap
close to fully explains the difference in workload duration. Since before invoking VTA, the

5.5 RESULTS

Workload Measured Median (Std) Simulated Duration Error
resnet18-cpu 0.846 (0.003) s 0.926's 9.46 %
resnet18-vta 100 MHz 1.228 (0.003) s 0.749 s* -39.01 %
resneti8-vta 167 MHz 1.229 (0.007) s 0.699 s* -43.12 %
resnet34-cpu 1.439 (0.004) s 1.5208 5.63 %
resnet34-vta 100 MHz 1.393 (0.012) s DNF DNF
resnet34-vta 167y MHz 1.4(0.006) s DNF, DNF

Table 5.3: Median workload duration and standard deviation measured on the physical FPGA SoC
board in comparison to the simulated duration from AC/DSim. The last column shows
the error relative to the physical baseline. For all workloads running in AC/DSim and
involving VTA, gems crashed (*). In this case, we measured the duration of the workload
until the crash. From profiling the physical system, we know that the part of the workload
after the crash that is not executed is in the order of 10s of milliseconds.

The resnet34-vta workloads did not finish after more than g days of simulation.

workload runs fully on the CPU, we conclude that we are facing a performance modeling
error in gems. Due to time constraints, we did not look further into this.

Before invoking the accelerator, the workload duration is the same across VTA clock
speeds when looking at the same model. Therefore, we can compare the numbers for resnet
18-vta 100 MHz and resnet18-vta 167 MHz and notice that the higher-clocking configuration
is 5oms faster. On the physical platform, VTA clock speed doesn’t make a difference,
which means that in practice, VTA’s performance is limited by memory bandwidth. In the
simulation, VTA’s DMA accesses are handled in gems. So here, we are again dealing with a
gems modeling error regarding either the widths of the buses involved in handling a DMA
access or the configuration of the memory controller.

Next, we look at the full-system energy estimates and how the power time series for the
individual components compare. We present the results for estimated energy in Table 5.4.
The gems modeling error causes high errors in the AC/DSim energy estimates for workloads
involving VTA. In comparison, the CPU energy estimates have an error below 15 %.

Assuming we wanted to build a system optimized for maximum energy, the estimates
from AC/DSim suggest that the CPU-only system is the best, although only ever so
slightly. When comparing this with the measurements on the physical platform, we draw
the same conclusion, for resnet18-v1, although energy usage, in reality, is actually much
better for the CPU-only configuration. Since the energy distance between CPU-only and
VTA-accelerated configurations decreases for larger model sizes, we expect that the VTA-
accelerated configuration would win for resnetso-vi.

We can further break down the full-system energy estimate errors by looking at the
components’ individual power draw over time, which we present in Figure 5.2. We see that
the estimation for the CPU power time series tends to generally overshoot. This is due to
adopting a power model built for a different CPU using simple adjustments (Section 4.3.2).
For the FPGA, however, we can see that despite the best case, since we use gate-level
simulation together with the manufacturer’s power estimation models, generally overshoots.

33

34

EVALUATION

Workload Measured Energy (Std) Simulated Energy Error
resnet18-cpu 0.848 (0.019)] 0.972] 14.58 %
resnet18-vta 100 MHz 1.389 (0.01)] 1.001 J* -27.95 %
resnet18-vta 167y MHz 1.369 (0.029)] 1.006 J* -26.48 %
resnet34-cpu 1.492 (0.024)] 1.662] 11.41 %
resnet34-vta 100 MHz 1.611 (0.024)] DNF DNF
resnet34-vta 167y MHz 1.6 (0.051)] DNF DNF

Table 5.4: Full-system energy usage and standard deviation measured on the physical FPGA SoC
board in comparison to the AC/DSim estimation. The last column shows the error relative
to the physical baseline. For all workloads running in AC/DSim that involve VTA, gems
crashes and we additionally identified significant modeling errors (*). The resnet34-vta
workloads did not finish after more than 9 days of simulation.

Applying a simple constant offset would bring the physical baseline and estimation closer
together though. The limited resolution of the power sensor makes Comparing VTA at
100 MHz to 167 MHz, we see that the FPGA power model reports a higher peak power draw
for the higher clocking configuration, which we can also observe in the physical testbed. As
discussed earlier in this section, the computation on VTA in the physical system is limited
by memory bandwidth, whereas in simulation it is not and can therefore finish faster. This
means that VTA’s signal activities are higher in simulation than in the physical testbed,
which also leads to higher estimated power draw under load. When correcting this and
applying a constant offset to the FPGA power model, we believe we could make the FPGA
power estimates very accurate.

Based on our observations, we can tentatively answer RQ3: Under the assumption that the
user carefully validates the simulators and power models used in AC/DSim against the
physical system where possible, we believe that AC/DSim can be used to reliably make
good or even optimal design choices. When skipping validation, however, AC/DSim can be
very inaccurate, leading users to the wrong design choices.

Power in W

Power in W

Power in W

2.00 A
1.754
1.50
1.254
1.00 4
0.75 A
0.50
0.25

0.00

—— CPU Measured
—— CPU Estimated
—— FPGA Measured
—— FPGA Estimated

T T T T
0 200 400 600 800
Time in ms

(a) resnet18-cpu

2.00 A
1.754
1.50
1.254
1.00 4
0.75
0.50
0.25
0.00 -

—— CPU Measured
—— CPU Estimated
—— FPGA Measured
—— FPGA Estimated

S——

ke

T T T T T
0 200 400 600 800

T T
1000 1200

Time in ms

(c) resnet18-vta 100 MHz

2.00 A
1.754
1.50 1
1.254
1.00 4
0.75
0.50

0.25

0.00 -

—— CPU Measured
—— CPU Estimated
—— FPGA Measured
—— FPGA Estimated

*£<:L‘{E::::::::;____a/’_\\

[~

0 200 400 600 800

1000 1200 1400

Time in ms

(e) resnet34-vta 100 MHz*

Power in W

Power in W

Power in W

5.5 RESULTS

2.00
1.754
1.50 4
1.254
1.00 4
0.75
0.50
0.25

0.00

—— CPU Measured
—— CPU Estimated
—— FPGA Measured
FPGA Estimated

T T T T T
0 200 400 600 800

T T T
1000 1200 1400

Time in ms

(b) resnet34-cpu

2.00 A
1.754
1.50 1
1.254
1.00 4
0.75
0.50
0.25
0.00

—— CPU Measured
—— CPU Estimated
—— FPGA Measured
—— FPGA Estimated

==

fiu

T T T T T
0 200 400 600 800

T T
1000 1200

Time in ms

(d) resnet18-vta 167 MHz

2.00 A
1.754
1.50 4
1.254
1.00 4
0.75
0.50
0.25

0.00

—— CPU Measured
—— CPU Estimated
—— FPGA Measured
—— FPGA Estimated

R N P— AN

[T

0 200 400 600 800

1000 1200 1400

Time in ms

(f) resnet34-vta 167 MHz*

Figure 5.2: Comparison of component-level power draw over time as estimated by AC/DSim with
the measurements taken on our physical FPGA SoC. (*) The resnet34-vta workloads did
not finish after more than g days of simulation so the power time series are cut off at the

end.

35

RELATED WORK

After evaluating AC/DSim and discussing the results, limitations, and future steps, we now
present related work.

AC/DSim is based on the full-system simulation tool SimBricks [24], which combines
and connects models for individual components to capture interactions between them.
An alternative to SimBricks is SST(Structural Simulation Toolkit) [35], which also aims
to connect existing models using standardized interface. SimBricks already implemented
support for the simulator combinations we required though, supporting gems [6, 26] for
the host, a selection of NIC models, and network simulators such as OMNeT++ [45] and
ns-3 [32]. Especially the integration of these accurate network simulators enables AC/DSim
to grow to larger systems involving multiple hosts without additional modifications as long
as the user is not interested in power or energy models for the network.

Compared to these very flexible full-system simulation tools, Simics [27] also claims to be
full-system. This may be true since it allows you to instantiate multiple hosts, connect them
over a network, and introduce additional models by using their included APIL. However,
the closed-source nature of Simics severely limits its flexibility. Simics also does not feature
a proper cache model. The existing cache model can only inject latencies but does not
return the actual data. We therefore cannot extract the workload information we require for
our CPU power estimation models based on GemStone [46], which requires performance
statistics for the caches. We expect issues for using other power models as well.

Aside from full-system simulation tools, ad-hoc solutions for specific types of systems that
include energy estimation exist. For accelerator-rich processor architectures, for example,
PARADE [11] provides full-system performance and power estimates for general-purpose
and specialized cores. It does so by combining RTL-level simulation and power estimation
for the specialized cores, both performed using Synopsys Desgin Compiler [41], and CPU
simulation for the general-purpose cores using gems. For the CPU power estimation, the
authors rely on McPAT [25]. Except for the CPU power model, this is similar to the approach
we used for AC/DSim. Although PARADE can estimate power for the full system, it is
limited to small systems of the class accelerator-rich processor architecture.

MofySim [29] is another tool for evaluating performance and energy usage of a specific
class of system, in this case mobile phones. Again, it combines gem5s with McPAT for the
CPU and simple linear models for network and display.

MCcPAT [25] in alternative to the linear-regression based power model we use in this thesis.
It takes a hierarchical approach for modeling the power consumption of processors. The
user has to provide detailed configuration parameters for the CPU that they want to model,
parameterizing cores, NoCs, caches, memory controllers, etc. Similar to our implementation,
McPat also takes workload information as input, for example, from a gems simulation. To
estimate power, it hierarchically decomposes the high-level blocks into basic circuit blocks.
It then uses analytic models for each block of these low-level blocks to estimate power,

37

38

RELATED WORK

taking additional configuration parameters such as the manufacturing technology node into
account.

Compared to AC/DSim, however, using McPAT requires a deep understanding of the CPU
and its internal layout. Aside from possibly not having access to such detailed information,
we demonstrated in our evaluation that this can easily lead to significant modeling errors.
In comparison, AC/DSim allows the user to use linear regression power models such as
GemStone [46] instead, which do not require any configuration parameters and are by
design hardware-validated since they are built using the physical CPU the system design
targets.

Aside from McPAT, Aladdin [37] is an interesting candidate for replacing cycle-accurate
RTL or gate-level simulation and the Vivado power estimation we used. Aladdin is a
trace-based accelerator simulator that profiles the dynamic execution of a C program and
constructs a dynamic data dependence graph as a dataflow representation of an accelerator.
It then applies optimizations as well as constraints to the graph to create a realistic model of
accelerator activity. The authors validated its accuracy to be within 7% accuracy compared
to standalone RTL designs of the accelerator and 100 times faster than actual RTL simulation.
gems-Aladdin [38] already combines aladding aladdin with gems5 to capture the interactions
between accelerator and CPU, although it uses gems’s syscall emulation instead of the full
system simulation mode. Compared to McPAT, which just estimates power, Aladdin takes
both roles, acting as the simulator and the power model. We have therefore have to further
verify whether we can actually integrate Aladdin into our framework. The issue is the
SimBrics full-system simulation, in which the modeled accelerator has to behave one one
hand accurately for accurate full-system performance results and on the other, functionally
correct.

Aside from related work presented in this section, we also highlight the integration of
power models from prior work into AC/DSim when discussing future work in Section 7.2
to enable power draw estimation for additional components, such as memory, SSDs, and
the network.

CONCLUSION

After evaluating AC/DSim, we now discuss our results in the context of the design goals
we set in Section 3.1 and the limitations our implementation and evaluation face. We then
highlight steps for future work.

7.1 DISCUSSION AND LIMITATIONS

When building AC/DSim, we set four design goals: full-system, modular, accurate, and
scalable. We now discuss the results and the limitations we identified in the context of these.

During our evaluation, we showed that we can indeed modularly combine existing power
models and simulators to produce full-system energy and power estimates. Although
our implementation covered three components (CPU, caches, and FPGA) and therefore
demonstrated the feasibility of estimating energy and power for the full system, we also
need to consider system memory when evaluating design choices. For our physical test
system (Avnet Ultrag6-V2), for example, we measured up to 343.75 mW power draw just
from the system memory, which we currently do not capture.

Regarding accuracy, we used a very limited selection of just inference workloads, all from
the same family of deep-learning models. Therefore, our evaluation is not extensive enough
to claim that AC/DSim can be reliably used to explore design choices in heterogeneous
systems. We demonstrated the feasibility of efficiently combining existing power models
and simulators for individual components though, which represents the first steps in this
direction.

Regarding our workload choice, we could only evaluate small workloads that use the
hardware accelerator for a maximum of 250ms due to very slow gate-level simulation.
Together with the limited resolution and sampling frequency of the power sensors of our
physical FPGA SoC system, this introduces measurement errors for our physical baseline.
We are able to sample the power sensors at an interval of 8oms, which, even in the best
case, means three samples while the hardware accelerator is under load. Further, this coarse
temporal resolution means that the power measurements in the physical system cannot
capture dynamic changes in accelerator load and, consequently, power draw that happens
at a finer granularity than the power sensors’ sampling frequency. On the other hand, this
highlights a big advantage for AC/DSim and simulation in general: The user can freely
decide the amount of detail they want to log. In the case of AC/DSim, the user can, for
example, control the sampling frequency per component, enabling very fine-grained energy
usage optimization.

We want to stress that, the user needs to validate the simulators and power models used
against a physical system for the components for which this is possible. Otherwise, the
estimates produced by AC/DSim can lead to bad system design choices, as we found during
our evaluation in Section 5.5.3.

39

40

CONCLUSION

Finally, we discuss scalability. Our approach can be used to evaluate larger systems that
involve, for example, multiple hosts with multiple hardware accelerators and a network in
between. This is handled by SimBricks [24], the full-system simulation framework we use.
Its authors demonstrated that given enough CPU cores, these larger simulations run with
minimal impact on simulation speed compared to simulating smaller systems. The second
part of AC/DSim is applying the power models to the sampled workload information. Since
we do this in post-processing, this part is also straightforward.

However, slow simulators hinder scalability. In our case, gate-level simulation of the
FPGA suffers from a more than 1’000’000 slow down, meaning we had to simulate for days
just to advance virtual time by 100ms. This is infeasible for large systems, which likely need
to be simulated for tens of virtual seconds. We pick this up in the next section, presenting
alternatives when discussing future work.

7.2 FUTURE WORK

After discussing our approach and highlighting the limitations during implementation, we
now outline necessary future work to enable AC/DSim to reliably estimate the power draw
and energy usage even of large systems.

The most obvious is making AC/DSim more full-system by adding additional power
models and, if necessary, also implementing SimBricks support for additional simulators
that can provide the necessary workload information to these power models. Interesting
components to look into in the future are system memory, for example, using the DRAM
controller model built into gems [14] and combining it with DRAMPower [8]. Another
component that can use a significant amount of energy are SSDs [12], which FlashPower [30]
can estimate. Larger Systems with multiple hosts involve networking, which can also use
noticeable amounts of energy [30]. SimBricks already supports network simulators such
as OMNeT++ [45] and ns-3 [32]. In the future, we could combine these with simple linear
power models for network switches, routers, and wireless links such as those presented in
[13, 20, 29, 34].

As highlighted in Section 7.1, we also need faster simulators for the hardware accelerator.
Concretely, we believe that the slowdown should be at most 10’000, which means that
40 virtual seconds take roughly 5 days to simulate. In the case of VTA, this slowdown is
achievable by RTL-level simulators. One such simulator is Verilator [39], which we found is
able to simulate VTA running at 100 MHz with a slowdown of less than 1’000. For Vivado’s
RTL-level simulation, we could not measure the slowdown due to VTA’s broken behavior
in that simulator. Even though we expect Verilator to be faster than Vivado RTL-level, it
produces huge waveform files. We can optimize this by trading off accuracy and only logging
for a limited window every sampling period. When producing the hardware accelerator’s
power time series, we then assume that signal activities remain constant throughout one
sampling period.

Finally, a direction we have not explored yet for AC/DSim is modeling temperature.
Temperature and power draw interact with temperature causing higher power draw [31]
and vice-versa, although this will reach an equilibrium in practice due to cooling or passive
heat dissipation. We can almost double our FPGA’s idle power draw by heating it up from
38 to 70 °C. Temperature estimation should therefore be integrated into the power models.

7.2 FUTURE WORK

In fact, the GemStone framework [46], which we use for our CPU power model, already
supports taking temperature as an input, although it cannot output temperature so this has
to be handled by a separate model, for example, the power and temperature model built
into gems [40]. Similarly, Vivado’s power model generally takes the configured heatsink
size into account and outputs a junction temperature, which has an influence on power
estimation [2] However, this functionality seems to be disabled in our case, as no matter
what we configure for the heatsink, the junction temperature and power draw remain the
same.

41

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Advanced Micro Devices, Inc. AMD Vivado™ Design Suite. https://www.amd.com/
en/products/software/adaptive-socs-and-fpgas/vivado.html. Retrieved Nov 24,
2024.

Advanced Micro Devices, Inc. Vivado Design Suite User Guide: Power Analysis and
Optimization (UG9oy v2024.2). https://docs.amd.com/r/en-US/ug907 - vivado -
power-analysis-optimization.

Apache Software Foundation. Apache TVM - An End to End Machine Learning Compiler
Framework for CPUs, GPUs and accelerators. https://tvm.apache.org/. Retrieved Nov
27, 2024.

Apache Software Foundation. Apache VTA (Versatile Tensor Accelerator) - Open, Modular,
Deep Learning Accelerator. https://github.com/apache/tvm-vta. Retrieved Nov 27,
2024.

Arm Limited. AMBA AXI Protocol Specification. https : / / developer . arm. com/
documentation/ihi0022/1latest/. Version September 2023.

Nathan L. Binkert et al. “The gem5 simulator.” In: SIGARCH Comput. Archit. News
39.2 (2011), pp. 1-7.
Cadence. Genus Synthesis Solution. https://www.cadence.com/en_US/home/tools/

digital-design-and-signoff/synthesis/genus-synthesis-solution.html. Re-
trieved Nov 17, 2024.

Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias Jung,
Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. DRAMPower: Open-
source DRAM Power & Energy Estimation Tool. http://www.drampower.info.

David Cock et al. “Enzian: an open, general, CPU/FPGA platform for systems software
research.” In: ASPLOS "22: 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 434—451.

Maxime Colmant, Romain Rouvoy, Mascha Kurpicz, Anita Sobe, Pascal Felber, and
Lionel Seinturier. “The next 700 CPU power models.” In: Journal of Systems and Software
144 (2018), pp. 382—396.

Jason Cong, Zhenman Fang, Michael Gill, and Glenn Reinman. “PARADE: A cycle-
accurate full-system simulation Platform for Accelerator-Rich Architectural Design
and Exploration.” In: IEEE/ ACM International Conference on Computer-Aided De-
sign (ICCAD). 2015, pp. 380—387.

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data Center Energy Consumption
Modeling: A Survey.” In: IEEE Communications Surveys & Tutorials 18.1 (2016), pp. 732—

794

43

https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://docs.amd.com/r/en-US/ug907-vivado-power-analysis-optimization
https://docs.amd.com/r/en-US/ug907-vivado-power-analysis-optimization
https://tvm.apache.org/
https://github.com/apache/tvm-vta
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
http://www.drampower.info

44

BIBLIOGRAPHY

[13]

[21]

[22]

[23]

Martin Dréxler, Frederic Beister, Stephan Kruska, Jorg Aelken, and Holger Karl.
“Using OMNeT++ for Energy Optimization Simulations in Mobile Core Networks.”
In: Fifth International Conference on Simulation Tools and Techniques. 2012.

Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch, and Aniruddha
N. Udipi. “Simulating DRAM controllers for future system architecture exploration.”
In: 2014 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 201-210.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. Dec. 10, 2015. URL: http://arxiv.org/abs/1512.03385.

https://github.com/ultraembedded. ultraembedded - AXI-4 JPEG Decoder. https:
//github.com/ultraembedded/core_jpeg_decoder. Retrieved Nov 21, 2024.

Intel Corporation. Quartus® Prime Pro Edition User Guide: Power Analysis and Optimiza-
tion (UG-20141). https://www.intel.com/content/www/us/en/docs/programmable/
683174.html. Retrieved Nov 21, 2024.

Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.
“PANIC: A {High-Performance} Programmable NIC for Multi-tenant Networks.” In:
14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20). 2020, PP. 243-259.

Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Process-
ing Unit.” In: ISCA ’17: The 44th Annual International Symposium on Computer
Architecture. 2017, pp. 1-12.

Fabian Kaup, Sergej Melnikowitsch, and David Hausheer. “Measuring and modeling
the power consumption of OpenFlow switches.” In: 10th International Conference on
Network and Service Management (CNSM). 2014, pp. 181-186.

Dario Korolija, Timothy Roscoe, and Gustavo Alonso. “Do OS abstractions make
sense on FPGAs?” In: 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 2020, pp. 991—1010.

Ian Kuon and Jonathan Rose. “Measuring the gap between FPGAs and ASICs.” In:
FPGAo06: ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
2006, pp. 21-30.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqgiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. “KV-Direct: High-Performance In-Memory
Key-Value Store with Programmable NIC.” In: SOSP "17: ACM SIGOPS 26th Sympo-
sium on Operating Systems Principles. 2017, pp. 137-152.

Hejing Li, Jialin Li, and Antoine Kaufmann. “SimBricks: end-to-end network system
evaluation with modular simulation.” In: SIGCOMM "22: ACM SIGCOMM 2022
Conference. 2022, pp. 380-396.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and
Norman P. Jouppi. “McPAT: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures.” In: The 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. 2009, pp. 469—480.

http://arxiv.org/abs/1512.03385
https://github.com/ultraembedded
https://github.com/ultraembedded/core_jpeg_decoder
https://github.com/ultraembedded/core_jpeg_decoder
https://www.intel.com/content/www/us/en/docs/programmable/683174.html
https://www.intel.com/content/www/us/en/docs/programmable/683174.html

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

BIBLIOGRAPHY

Jason Lowe-Power et al. “The gems Simulator: Version 20.0+.” In: CoRR abs/2007.03152
(2020).

Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav
Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner.
“Simics: A full system simulation platform.” In: Computer 35.2 (2002), pp. 50-58.

Max Planck Institute for Software Systems and National University of Singapore.
SimBricks Developer Guide - Architectural Overview. https://simbricks. readthedocs.
io/en/latest/devel/arch.html. Retrieved Nov 29, 2024.

Minho Ju, Hyeonggyu Kim, and Soontae Kim. “MofySim: A mobile full-system
simulation framework for energy consumption and performance analysis.” In: IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
2016, pp. 245-254.

V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and S. Swanson. “Mod-
eling Power Consumption of NAND Flash Memories Using FlashPower.” In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 32.7 (2013),
Pp- 1031-1044.

Yehya Nasser, Jordane Lorandel, Jean-Christophe Prevotet, and Maryline Helard.

“RTL to Transistor Level Power Modeling and Estimation Techniques for FPGA and
ASIC: A Survey.” In: IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 40.3 (2021), PP. 479—493.

nsnam. ns-3 | a discrete-event network simulator for internet systems. https://www.nsnam.
org/. Retrieved Feb 2, 2022.

Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar Krishna. “ASTRA-
SIM: Enabling SW/HW Co-Design Exploration for Distributed DL Training Plat-
forms.” In: 2020 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). 2020, pp. 81-92.

P. Reviriego, V. Sivaraman, Z. Zhao, J. A. Maestro, A. Vishwanath, A. Sanchez-
Macian, and C. Russell. “An energy consumption model for Energy Efficient Ethernet
switches.” In: International Conference on High Performance Computing & Simula-
tion (HPCS). 2012, pp. 98-104.

A. F. Rodrigues et al. “The structural simulation toolkit.” In: SIGMETRICS Perform.
Eval. Rev. 38.4 (2011), pp. 37—42.

Hugo Sadok, Aurojit Panda, and Justine Sherry. “Of Apples and Oranges: Fair
Comparisons in Heterogenous Systems Evaluation.” In: HotNets "23: The 22nd ACM
Workshop on Hot Topics in Networks. 2023, pp. 1-8.

Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. “Aladdin:
a Pre-RTL, power-performance accelerator simulator enabling large design space
exploration of customized architectures.” In: ACM SIGARCH Computer Architecture
News 42.3 (2014), pp. 97-108.

45

https://simbricks.readthedocs.io/en/latest/devel/arch.html
https://simbricks.readthedocs.io/en/latest/devel/arch.html
https://www.nsnam.org/
https://www.nsnam.org/

46

BIBLIOGRAPHY

[38]

[48]

Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and David
Brooks. “Co-designing accelerators and SoC interfaces using gems-Aladdin.” In: 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 2016,

pp- 1-12.

Wilson Snyder, Paul Wasson, and Duane Galbi. Verilator. https://verilator.org.
Retrieved Nov 27, 2024.

Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, Peter Aldworth, and Stefanos
Kaxiras. “Introducing DVFS-Management in a Full-System Simulator.” In: IEEE 21st
International Symposium on Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS). 2013, pp. 535-545.

Synopsys, Inc. Design Compiler. https://www.synopsys.com/implementation-and-
signoff/rtl-synthesis-test/dc-ultra.html. Retrieved Dec 16, 2024.

Synopsys, Inc. PrimePower - RTL to Signoff Power Analysis. https://www.synopsys.
com/implementation-and-signoff/signoff/primepower.html. Retrieved Nov 22,
2024.

Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.
“Isolation Mechanisms for High-Speed Packet-Processing Pipelines.” In: 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). 2022,

pp- 1289-1305.
The OpenROAD Project. OpenSTA. https://github.com/The-0penROAD-Project/
OpenSTA/blob/master/doc/0penSTA. pdf. Retrieved Nov 22, 2024.

Andrés Varga and Rudolf Hornig. “An overview of the OMNeT++ simulation en-
vironment.” In: Proceedings of the 1st International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems & Workshops. 2008.

Matthew Walker, Sascha Bischoff, Stephan Diestelhorst, Geoff Merrett, and Bashir
Al-Hashimi. “Hardware-Validated CPU Performance and Energy Modelling.” In: IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
2018, pp. 44-53.

Matthew J. Walker, Stephan Diestelhorst, Andreas Hansson, Anup K. Das, Sheng Yang,
Bashir M. Al-Hashimi, and Geoff V. Merrett. “Accurate and Stable Run-Time Power
Modeling for Mobile and Embedded CPUs.” In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36.1 (2017), pp. 106—119.

Zhizhen Zhong, Mingran Yang, Jay Lang, Christian Williams, Liam Kronman, Alexan-
der Sludds, Homa Esfahanizadeh, Dirk Englund, and Manya Ghobadi. “Lightning:
A Reconfigurable Photonic-Electronic SmartNIC for Fast and Energy-Efficient Infer-
ence.” In: ACM SIGCOMM "23: ACM SIGCOMM 2023 Conference. 2023, pp. 452—

472.

https://verilator.org
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://github.com/The-OpenROAD-Project/OpenSTA/blob/master/doc/OpenSTA.pdf
https://github.com/The-OpenROAD-Project/OpenSTA/blob/master/doc/OpenSTA.pdf

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Background
	2.1 Power Draw and Energy Usage
	2.1.1 Power Consumption of Modern Hardware

	2.2 Per-Component Power Models
	2.2.1 Hardware Accelerators Power Models
	2.2.2 CPU and CPU Caches Power Model

	2.3 Full-System Simulation
	2.3.1 Simple HW Accelerator System: Important Components and their Interactions
	2.3.2 Assembling Full-System Simulations with SimBricks
	2.3.3 Host Simulation
	2.3.4 HW Accelerator Simulation and Power Estimation

	3 Design
	3.1 Design Goals
	3.2 High-Level Overview
	3.3 Design Assumptions
	3.4 Collecting Workload Information in a Full-System Simulation
	3.5 Sampling Power Estimates

	4 Implementation
	4.1 Our FPGA SoC Baseline System
	4.2 Simulating the FPGA SoC Baseline System
	4.2.1 Speeding Up Gate-Level Simulation

	4.3 Estimating Energy of the FPGA SoC Baseline System
	4.3.1 FPGA Power Estimation
	4.3.2 CPU and CPU Caches Power Estimation
	4.3.3 Post-Processing for Full-System Energy Usage

	5 Evaluation
	5.1 Evaluation Questions
	5.2 HW Accelerator and Workloads
	5.3 Measuring the Physical Baseline
	5.4 Measurements with AC/DSim
	5.5 Results
	5.5.1 RQ1: Feasibility of Modularly Combining Power Models
	5.5.2 RQ2: Estimation Efficiency
	5.5.3 (Preliminary) RQ3: Accuracy of Power and Energy Estimates

	6 Related Work
	7 Conclusion
	7.1 Discussion and Limitations
	7.2 Future Work

	 Bibliography

