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Abstract

Computer networks form the backbone of modern computing, whether in
data centers or for the communication of end devices with servers for the
multitude of Internet-based applications. In data centers in particular, ever
more powerful servers and the trend towards distributed applications that
communicate a significant amount with each other have greatly increased
the demands on the network. In order to meet these requirements, network
technologies are constantly evolving and there is a trend towards more di-
verse network systems with specialized components and network protocols.
In the course of further research and development of these systems, there
is a need to be able to test and evaluate them. Physical testbeds are often
neither available nor feasible, so researchers turn to network simulations,
which however fail to capture the complex intricacies of today’s network
systems. End-to-end simulations are able to adequately model all relevant
components of the network, but they do not achieve the required scale with
practical computational resources and simulation performance.

This thesis introduces a framework that addresses the drawbacks of full-
system simulations. It builds on previous work on modular full-system sim-
ulation and provides easy-to-use elements that allow the simulation to be
scaled further. First, mixed-fidelity simulations allow choosing the level of
simulation detail for different components. This allows less relevant com-
ponents to be simulated with less detail, thereby reducing computational
resources. Next, the framework allows a large network topology to be split
into multiple partitions and simulated in separate, synchronized network
simulator instances. This prevents the network simulator from becoming a
bottleneck and slowing down the entire simulation. Finally, the framework
provides abstractions that allow complex large scale network simulations to
be created without having to configure the individual simulators directly.

The evaluation shows that the framework offers a practical solution for
large scale full-system simulations with feasible computational resources and
simulation performance. It demonstrates that mixed-fidelity simulations and
decomposing bottleneck network simulators are easy to implement with our
framework and reduce both simulation time and needed resources, while still
providing sufficient accuracy.
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Chapter 1

Introduction

1.1 Rapid Development of Networks

Computer networks are the backbone for today’s computer applications.
They are essential for any communication between different computers which
is crucial for the vast majority of modern applications. With the increas-
ing amount of data that modern applications process, the demand for ef-
ficiently moving huge amounts of data is rising quickly. This requires fast
development and improvement of the networking technology including both
hardware and software to keep up with the demand.

Over the last 60 years, there have been many further developments in
hardware for computer networks. On the one hand, manufacturing pro-
cesses for hardware components have constantly evolved, making computers
and network components ever more powerful and able to process and ex-
change larger amounts of data faster. In order to maximize performance,
increasingly specialized network components have been developed, such as
SmartNICs [7, 8, 14] or programmable network switches [3, 18]. In addition,
transmission technologies have continued to improve and new technologies
such as fiber optics have been developed.

In addition to the hardware, the software has also evolved in order to
make efficient use of the improved network resources and the increasingly
capable and complex hardware. This includes improvements to established
network protocols such as TCP [1, 4] or the development of new specialized
network protocols like Homa [20].

These developments are particularly visible in data centers, where there
is a great need for high-performance networks for fast communication be-
tween servers. Due to the special requirements in a data center for high
throughput and low latencies, there are many developments and innovations
for this special use case that aim to maximize performance.
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1.2 Evaluating Networks Is Difficult

While we develop new hardware or software for networks, we have to test and
evaluate them at some point. However, this is not an easy task, as networks
are complex systems made up of many types of components, including com-
puters, routers, and network switches. For each of these components there
is additionally a great variety in terms of hardware and software available,
such as various types of network switches that can be deployed in the net-
work. In addition, networks can consist of thousands or even millions of
individual components that are connected to each other.

The overall behavior of a network is a combination of many different
individual components’ behavior and the interactions between them. The
interconnected nature of a network means that we cannot look at individual
components in isolation because they naturally influence each other through
their interactions. Therefore, properly evaluating and testing a network
requires us to capture the behavior and interactions of many pieces in order
to capture the behavior of the whole network. Because of this complexity, we
cannot easily predict how a new network switch or a new transport protocol
will affect the performance of the network. This means that in order to
evaluate a network, we must look at the entire network as a whole, even if
we only change one part of the network.

1.3 Current Approaches Are Insufficient

In section 1.2 we have already established that testing and evaluating a
network is a difficult task. Unfortunately, the solutions available to us today
are not sufficient to adequately solve the problem. They often lack either
flexibility, precision or a deep insight into the system.

Physical testbeds, for instance, are often infeasible [32] because of high
costs and a long time investment to set them up, if there is not already a
fitting network system in place that could be used for this purpose. More-
over, working with a physical system also means that we might have to swap
physical components and configure actual computers, network switches and
other hardware, which makes changing and adapting such a system a com-
plicated process. This is especially true when we need to do this at a large
scale with thousands of components. Another consequence of a physical
testbed is that we need to have all physical components available, which
rules out this approach in early-stage development of hardware when there
is no physical prototype available yet. Lastly, although a physical testbed
allows us to observe the overall behavior of the network, it is often hard
to obtain in-depth insight into the system in order to also understand and
explain the behavior.

There are also approaches that model the behavior of a network, like
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for example network simulators. However, they only focus on some parts
of the overall system and use abstractions to deal with the complexity of
the system. Consequently, they do not manage to model all intrinsic details
of the network. This makes network simulators insufficient to model all in-
volved components with great detail, preventing true end-to-end evaluations
of the network. Instead, we have to model and evaluate different pieces of
the complete system separately, basically in isolation, and then combine the
results afterwards. Because of the tight integration of the components, we
might miss important aspects of the interplay so that they are not reflected
in the pieced together results. Additionally, network simulators often do not
scale for large network systems [32], leading to very long simulation times.

Full-system simulation combines network simulators with dedicated de-
tailed component simulators in order to provide end-to-end evaluations of
the network. However, when scaling to large network systems full-system
simulation needs many simulator instances requiring infeasible amounts of
computation resources.

Current evaluation approaches therefore struggle to capture the behavior
of diverse large scale network systems, especially involving highly specialized
hardware, like programmable switches or SmartNICs. Large scale network
simulations are needed, for example, for testing and evaluating network pro-
tocols, since they naturally involve thousands of hosts. Physical testbeds
require the specialized hardware to be physically available and installed.
To scale them, we need to purchase and install more components, which
requires a lot of money, space and time. Simulators lack detailed models
for the specialized hardware and therefore fail to capture the end-to-end
behavior of the network and do not scale for large networks. Full-system
simulation provides end-to-end evaluations but requires large amounts of re-
sources for large scale simulations. Lastly, the current solutions are difficult
to implement, as with physical testbeds, or they have a steep learning curve,
like it is the case for many simulators.

1.4 Contribution

This thesis addresses the shortcomings of full-system simulation and for that
proposes a framework to build, configure, and run large scale full-system
network simulations with feasible resource requirements. To this end, the
framework offers various features to scale the simulation efficiently and re-
duce the required computation resources. On the one hand, components
in the simulated system can be simulated with different levels of detail by
choosing which simulator to use to model the component. These mixed-
fidelity simulations enable more resource efficient simulations by moving
non-critical components into less detailed simulators which also require less
computation resources. On the other hand, the large network topology can
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be split into multiple parallel, synchronously simulated partitions, prevent-
ing the network simulator from becoming a bottleneck and slowing the sim-
ulation drastically down. For that, the framework provides an abstraction
for the simulated network which is integrated into the full-system simula-
tion framework SimBricks [16]. The abstraction offers a practical approach
to implement and configure mixed-fidelity simulations and parallelize bot-
tleneck network simulators without requiring manual configuration of each
underlying simulator.

1.5 Prior Publications
Parts of the results of this thesis have been submitted for publication and
have been included in a corresponding preprint [17]. The publication in-
cludes the network simulator abstraction to configure mixed-fidelity network
simulations and to decompose bottleneck network simulators. It uses the
framework that is included in SimBricks and ns-3 for the configuration and
orchestration of large scale network simulations. Finally, the evaluation of
the publication makes use of the framework for experiments using network
simulations.
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Chapter 2

Background

2.1 Network Evaluation

There exist many ways to evaluate and test networks. We can mainly dis-
tinguish between two major approaches: physical testbeds and simulation.
Each of them comes with its own set of advantages and disadvantages. In
the following, we will take a closer look at the different approaches.

2.1.1 Physical Testbed

A physical testbed is a real network system with actual physical compo-
nents that runs the complete software stacks. The advantage of a physical
testbed is that it can provide realistic results and it runs in real time allow-
ing fast evaluations. The usefulness of the results however depends on the
fact whether the testbed is representative of the system that will actually be
used later. For example, when we use a small testbed it can be difficult to
extrapolate the results to a large scale system, because we might not observe
certain behaviors of the larger system in the testbed. Therefore, we ideally
need a testbed that also corresponds to the later system, which is also a
disadvantage of physical testbeds, since a large scale physical system is of-
ten neither available nor feasible [32]. Therefore, researchers and developers
usually resort to smaller testbeds, possibly limiting the usefulness of the
results. Further, physical testbeds do not give us unlimited insight into the
system and limits what we can observe from the system. We are normally
able to observe high-level behavior of the system like throughput or latency,
but it might not be possible to observe complex behavior like caching with
sufficient detail. Lastly, a physical testbed is not portable, since we require
the physical system to use it. Both moving and rebuilding or cloning the
system is complicated and infeasible in the common case.
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2.1.2 Simulation

Researchers and developers typically resort to simulation, in order to over-
come some drawbacks of physical testbeds. Simulation aims to model the
behavior of the network system in software. The advantage of simulation
compared to physical testbeds is, that we do not need to have the actual
physical system available, and it even gives us the possibility to model a
component, that does not physically exist yet. Another advantage of sim-
ulation is its flexibility in terms of configuring the system. We can simply
change configuration parameters, add more components, and choose between
different components in software. This is easy to implement compared to
a physical testbed where we have to carry out the changes in a physical
system. It also allows us to scale the simulated system from just a few com-
ponents up to thousands of hosts. Since the simulation is done in software,
we are able to execute it basically on any computer, which makes it portable
and enables researchers and developers to reproduce and compare results.
Furthermore, simulation can provide in-depth insight into the system de-
pending on the level of detail of the simulation. With simulation, we can
capture any of the behavior that is modelled by the simulator, for example
by recording changes of variables or functions calls, without affecting the
behavior of the simulated system. But on the other hand, long simulation
times are a typical disadvantage. Depending on the simulator and how de-
tailed the simulation is, it can take many hours or even days to simulate
just a few seconds of a large network. The larger the simulated system,
the longer the simulation typically takes. In addition, due to the abstrac-
tions of the network simulators, it is usually not possible to run unmodified
real-world applications in the simulation to generate authentic traffic. Fi-
nally, the results of a simulation might not reflect the behavior of a physical
system. This depends on how well the simulator is able to model the real
system. In order to ensure that the results are representative, we need to
validate them against a physical testbed.

There already exist many network simulators that offer different levels
of detail, simulation complexity and simulation times, such as ns-3 [21],
OMNeT++ [12], and htsim [11]. Network simulators typically use discrete
event simulation to model how packets traverse the network, which is a good
fit for packet-switched networks.

2.1.3 Mix of Simulation and Physical System

Network simulators have to properly model the system with sufficient detail
in order to deliver representative results. This might require a lot of imple-
mentation effort and lead to a complex simulator and long simulation times.
This is especially true if we want to use real-world applications or an already
existing implementation of a new network protocol, which we first have to
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adapt and integrate into the simulator. To solve this problem, we can inte-
grate physical components into the simulation and execute an application or
network protocol as we would run it in a real system. We then bind this to
the simulation by intercepting the physical system at some point where we
establish a bidirectional communication. The advantage with this approach
is that we can run complex software or even integrate special hardware with-
out having to model them in the simulation. But while this approach covers
the functional behavior of the physical parts, we cannot accurately reason
about the performance of these parts anymore.

For example, the network simulator Dummynet [25] combines execution
on a physical system for applications and protocol stacks with the simulation
of certain network features like queues or bandwidth limitations. There also
exists the framework Direct Code Execution (DCE) [27], which integrates
into the network simulator ns-3 [21]. DCE provides a way to run almost
unmodified applications and network protocols under Linux in a ns-3 simu-
lation by executing them almost natively on the machine.

2.2 SimBricks

SimBricks [16] is a flexible simulation framework that enables end-to-end
evaluations of computer systems. For that, SimBricks combines already ex-
isting simulators for different components of a computer system, for example
processors, memory, and networks, into one overall simulation. To this end,
SimBricks implements adapters for each simulator which allows them to ef-
ficiently exchange data using shared memory queues and synchronize with
each other for accurate timing. Each instance of a simulator is executed in
its own process and communicates with other simulator processes through
the SimBricks adapters.

SimBricks’ design allows users to run full-system simulations that sim-
ulate all components of a system and in turn allow capturing the complete
picture which we will further discuss in subsection 2.2.1. In subsection 2.2.2
we describe the modular approach of SimBricks where different simulators
can be flexibly combined and interchanged. Lastly, we touch upon the
scalable nature of SimBricks in subsection 2.2.3 that allows creating large
simulations.

2.2.1 Full-System Simulation

There are many simulators that are capable of simulating various computer
system components. But in practice there is not one single simulator that
is capable of simulating all system components at once. Therefore, Sim-
Bricks combines multiple simulators into one overall simulation, where each
simulator is responsible to model one component of the system. The result-
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Figure 2.1: Overview of a full-system simulation with four hosts and their
NICs connected to a network. It shows a packet travelling from Client 1 to
Server 1. Based on Figure 2 in [16].

ing full-system simulation enables the user to test and evaluate the system
end-to-end, instead of testing and evaluating each component in isolation.

Figure 2.1 shows how SimBricks connects simulators at natural bound-
aries, like Ethernet for network connections or PCI for connections between
devices and hosts, into a full-system simulation. This works well in prac-
tice, since most simulators model system components up to the point of a
well established common interface where the component would then con-
nect to another component of the system. The system shown in Figure 2.1
consists of four host simulators that are each connected via PCI through
SimBricks to a NIC simulator, which in turn connects to a network sim-
ulator via Ethernet. This setup allows capturing the behavior of the full
system from complex host behaviors like caching to routing and queuing of
network packets in the network. It also captures the interactions between
the individual components through the SimBricks channels. For example,
a packet that is generated by an application on Client 1 travels through
the client’s NIC and the network to the server’s NIC and finally arrives at
Server 1, involving five simulator instances working together.

2.2.2 Modular Simulation

Since SimBricks implements communication between simulators leveraging
common protocols like Ethernet and PCI, simulators can be flexibly con-
nected with each other in a modular fashion. For two simulators to be
connectable they must both have a SimBricks adapter that implements the
same protocol. This means, that after we have implemented an adapter for
a simulator using some protocol, we can connect this simulator to any other
simulator implementing an adapter using the same protocol. In particular,
this eliminates the need to implement special adapters for each pair of simu-
lators, keeping the implementation effort low. Consequently, simulators can
be connected via SimBricks in the same way as their corresponding system
components in a real computer system.

Furthermore, for most of the system components there exist not only one

8



Client 1
gem5 Network

ns-3

Switch Switch
Client 2

gem5

Server 1
qemu

Server 2
qemu

NIC 1
i40e_bm

NIC 2
i40e_bm

NIC 4
i40e_bm

NIC 3
i40e_bm

PCI Ethernet

Figure 2.2: A full-system simulation that has the same structure as the
system in Figure 2.1, but uses qemu instead of gem5 to simulate the servers.

single simulator that is capable of simulating it. Instead, various simulators
have emerged over time, which offer different trade-offs in terms of accuracy,
resource requirements and scalability. SimBricks’ modular approach gives
us the additional ability to easily choose between different simulators for one
system component and switch between them with little effort.

Figure 2.2 showcases how the modular approach lets us choose and com-
bine different simulators for the simulated components. While we are simu-
lating the clients with the host simulator gem5, we pick the host simulator
qemu for simulating the servers. Note that the structure of the simulators
is still the same compared to Figure 2.1, with the only difference that we
selected other simulators for some components.

2.2.3 Scalability
The design of SimBricks makes it easy to scale simulations. By running each
simulator instance in its own process, SimBricks naturally parallelizes the
full-system simulation. In order to scale a simulation, we simply add more
components to the simulated system. Each of the added components is then
simulated by an additional simulator instance. This however also increases
the number of physical CPU cores that are need to execute the simulation.

Although SimBricks enables us to efficiently scale simulations by adding
more processes, the resources of a computer are limited. In order to scale
the simulation beyond the resource limits of a single machine, SimBricks
distributes simulator processes across multiple machines. For the communi-
cation of simulator processes on different machines SimBricks uses proxies
to transparently forward communication over the network.
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Chapter 3

Design

3.1 Design Goals
The goal of the presented framework is to enable practical full-system net-
work simulation at a large scale. To address the challenges of large scale
full-system network simulations, we have the following design goals:

• Scalable: simulate large scale networks with thousands of components
within manageable requirements for compute resources.

• Efficient: run the simulation efficiently without high overheads and
avoid individual simulators becoming a bottleneck and slowing down
the simulation.

• Flexible: choose flexibly which simulator to use for which component
and easily switch between different simulators for a component.

• Easy to use: offer a simple interface to compose the full-system
simulation and allow for easy changes between simulators.

3.2 Design Overview
3.2.1 Approach
SimBricks [16] allows us to compose and run full-system network simula-
tions, by simulating all components of the network with detailed component
simulators and combining them into one overall simulation. However, when
scaling such a full-system simulation to a large network with thousands of
components, this requires many simulator instances leading to a high de-
mand for compute resources. Due to the design of the SimBricks adapters
which rely on polling, we need one CPU core for each simulator process,
which means that we need hundreds or thousands of CPU cores for large
scale simulations.
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In the following, we will discuss three approaches that help us to over-
come the limitations of large scale simulations. First, our framework enables
mixed-fidelity simulations, where we use detailed but resource intensive sim-
ulators for one part of the system and less detailed but more resource efficient
simulators in other parts. Secondly, we make more efficient use of the avail-
able resources by parallelizing bottleneck simulators that would otherwise
slow down the entire simulation. Lastly, the framework provides program-
ming abstractions to assemble and configure these large scale full-system
simulations, making them practical to use.

Mixed-Fidelity Simulations

In order to overcome the limitations of large scale full-system network sim-
ulations, we propose to simulate some parts of the simulation with less
detailed but more efficient simulators, while only simulating essential parts
of the network simulation with the full level of detail, resulting in mixed-
fidelity simulations. This can save substantial compute resources and still
provide sufficient detail and insight into the simulation through the detailed
simulators. The idea is that we move less critical areas of the system to
less detailed simulators, so that it does not affect the accuracy of our sim-
ulation results. An example where this is useful is during the evaluation of
a network protocol in a large network. In order to create a representative
environment, we must generate realistic traffic in the network. This allows
us to observe, for example, the effects of background traffic or congestion
on the evaluated network protocol. However, we usually do not need a de-
tailed simulation of the hosts that generate the background traffic, so that
a protocol-level simulation modelled by a less detailed simulator is sufficient
for those hosts.

For which components we use detailed simulators and for which less de-
tailed simulators depends on the specific use-case and evaluation goal. This
must therefore be decided on a case-by-case basis, and we might even want
to take different approaches for the same basic simulation. For example,
when we look at a client-server system we might want to achieve different
evaluation goals. On the one hand, we can evaluate the peak throughput of
the system, or on the other hand we can also evaluate the end-to-end request
latency between the clients and the servers. We might not necessarily need
to model the internal behavior of the client in detail when evaluating the
throughput. As long as the client sends correct requests at the required rate,
it makes no difference to the server whether a detailed or less detailed sim-
ulator generates those requests. However, when we evaluate the end-to-end
request latency, the internal behavior of the client might have substantial
influence on the measured results, since the internal processing of the client
makes up one part of the overall end-to-end latency. Therefore, we probably
need to simulate the clients that measure the latency with higher detail for
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Figure 3.1: Two configurations for a full-system network simulation. The
end-to-end configuration simulates all components with a high level of detail.
The mixed-fidelity configuration moves the simulation of some hosts and
their NICs into the network simulator ns-3.

realistic results.

In the previous examples, we proposed to use different levels of fidelity
for the various host components in the full-system network simulation. We
can achieve a high fidelity end-to-end simulation of the hosts with detailed
architectural simulators, like gem5 or qemu. For a less detailed simulation
at the protocol level we can, for example, use network simulators, such as
ns-3 or OMNeT++. Figure 3.1 shows an end-to-end and a mixed-fidelity
configuration of a network simulation. In the end-to-end simulation we use
the architectural simulator gem5 for a detailed model for all the hosts. In
the mixed-fidelity case we move some of the hosts to the network simulator
ns-3, which models the hosts at the protocol level. Of course, the host is not
the only component for that we can choose between simulators with different
levels of detail. We can, for example, simulate a NIC with an accurate but
resource intensive RTL-level simulation or with a faster behavioral model.
Since we are focusing on large scale full-system network simulations in this
thesis, we will mainly look at the trade-off of simulating a component either
in a network simulator or in a detailed component simulator.
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Figure 3.2: Parallelizing an instance of the network simulator ns-3 by split-
ting the network topology along an Ethernet connection into two parts and
connect them through a SimBricks channel.

Decomposition of Bottleneck Simulators

One consequence of synchronized simulations is that the entire simulation
is only as fast as the slowest simulator. We found that this is typically a de-
tailed simulator, such as an architectural simulator like gem5 or a RTL-level
simulation. However, if we move many components into a less detailed sim-
ulator, this can become a bottleneck. For example, if we simulate hundreds
or even thousands of hosts in a network simulator at the protocol-level, the
amount of computation that this simulator has to carry out becomes very
large, making it a bottleneck in the full-system simulation. We propose to
parallelize the bottleneck simulators to distribute the computation across
multiple processes. This speeds up the simulation and makes more efficient
use of the available resources, since the bottleneck simulator no longer holds
other simulators up that otherwise waste cycles with waiting. However, par-
allelizing simulators is in general a difficult problem and this is no different
for network simulator, which we will mostly focus on in this thesis. Al-
though some network simulators, such as ns-3, already offer capabilities for
parallelization, they often scale poorly [32]. Additionally, we typically have
to adapt the simulation accordingly in order to parallelize it, which takes
some effort.

In our approach, we decompose simulators at natural boundaries, which
in the case of a network simulator is Ethernet. We then simulate each part
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that we get after the decomposition in its own simulator process and connect
the individual instances through adapters with each other, effectively paral-
lelizing the simulator. For that, we make use of already existing SimBricks
adapters in the network simulators, which let us connect and synchronize
the parallel processes through SimBricks channels. Figure 3.2 shows an ex-
ample of how we can parallelize an instance of the network simulator ns-3
in two processes. We split the network topology at the Ethernet connection
between the two switches into two parts and subsequently replace the ns-3
internal Ethernet connection with a SimBricks channel.

Configuration and Orchestration

Running full-system network simulations is already a complicated task as
it requires starting and configuring many simulator instances. When we
scale up the network simulation, using both mixed-fidelity simulations and
splitting bottleneck simulators, orchestrating the simulation becomes even
more complex. For that, we introduce abstractions for the simulators in
the orchestration framework, especially for the network simulator. The goal
is to have a separation between the specification of the simulated system
and its implementation. The specification defines the components in the
simulation, including their simulator independent configurations, and how
they are connected with each other. To do this, we provide basic building
blocks from which the specification can be assembled. The implementation
specifies which simulator should be used to simulate which component and
how the simulator should simulate the component. This approach makes
both mixed-fidelity and decomposing simulators easier to implement for the
user.

If we want to convert an end-to-end simulation into a mixed-fidelity
simulation, we only have to change the implementation, however the speci-
fication remains the same. In the implementation we can choose, for exam-
ple, for a host component whether we want to simulate it with a detailed
architectural simulator or with a network simulator at the protocol level.
This changes how we simulate the system, but the structure of the system
itself stays the same. This approach also allows us to easily try out differ-
ent mixed-fidelity configurations by moving components between detailed
and less detailed simulators in the implementation. Similarly, we can also
split bottleneck network simulators into smaller, parallel simulated parts
by adapting the implementation accordingly. The trivial implementation
choice is to put all the components that we want to simulate in a network
simulator into one network simulator instance. However, we can also par-
tition the network topology that is defined by the specification and then
choose to simulate each partition in a separate process. In the implemen-
tation we also take care of introducing the necessary SimBricks channels
between the network simulator instances. Therefore, just by deciding in the
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implementation which component to simulate in which network simulator
instance we can parallelize parts of the simulation.

Another advantage of this abstraction is that we can create large scale
full-system network simulations without having to configure the underly-
ing simulators directly, but purely within the orchestration framework. In
this thesis, we present in particular a flexible abstraction of network simu-
lators, the design of which we discuss in more detail in section 3.3. With
this abstraction we can configure mixed-fidelity simulations and decompose
bottleneck simulators basically transparent to the underlying simulators.
This presents a very practical and easy-to-use approach for large scale net-
work simulations to users. However, the user can still configure simulators
manually at any time and integrate this into the simulation. This allows
for maximum flexibility and enables users to utilize the full feature set of
simulators.

3.2.2 Overview of Framework Architecture
We integrate our framework tightly with SimBricks, in order to make use of
SimBricks adapters and channels for connecting simulators with each other
and to make use of the orchestration framework of SimBricks, which already
supplies key features for assembling and orchestrating full-system simula-
tions. Our framework adds the features and abstractions that we covered in
subsection 3.2.1 to provide practical large scale full-system network simula-
tions. For this thesis we set the main focus on network simulators because
they simulate many different components due to the fact that networks are
very diverse systems. Therefore, network simulators offer a great opportu-
nity for building an abstraction layer that enables us to compose large scale
network simulations in the orchestration framework while also allowing us
to build mixed-fidelity simulations and decompose bottleneck network sim-
ulators.

To this end, the presented framework builds an abstraction layer on top
of network simulators, which consists mainly of two parts: one part that is
integrated into the orchestration framework of SimBricks to construct and
configure the full-system simulation and another part that is implemented
in the network simulator which takes care of realizing and running the sim-
ulated network.

Figure 3.3 shows the general architecture of the framework. The user
provides a configuration script that uses the orchestration framework to as-
semble and configure the simulation. To do this, the user first describes
which network system he wants to simulate by creating a specification for
this system. He then describes in the implementation how this specification
is to be simulated. For the network simulators, the orchestration framework
uses the abstraction layer of the network simulators to generate network de-
scriptions that are given to the network simulator instances. The network
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simulators receive the descriptions and turn them into a network simulation,
which they then execute. For the other simulators, the orchestration frame-
work already provides the necessary capabilities to launch them. Finally,
the orchestration framework takes care of launching all simulators with the
necessary configuration parameters and makes sure to terminate them once
the simulation has finished. This architecture enables us to easily configure
and run large scale full-system network simulations, by providing a specifi-
cation and an implementation choice for the desired network system within
a single configuration script.

3.3 Network Simulator Abstraction Layer

Computer networks comprise many different components, like network
switches, routers, or hosts, and we can use those components to build various
network systems. This gives us a lot of freedom but also a lot of possibil-
ities to build network simulations. Therefore, network simulators usually
require us to assemble a specific network system within a program using
the components that are offered by the simulator. However, in the context
of our proposed framework that aims to overcome the issues of large scale
full-system network simulations, directly configuring the network simula-
tors becomes very cumbersome and time-consuming. For example, if we
move components from a special component simulator to the network sim-
ulator in the course of a mixed-fidelity simulation, we have to adapt and
reconfigure the network simulator. Similarly, if we want to decompose a
bottleneck network simulator into several parts, this requires changes to the
network simulator and even the addition and configuration of new simulator
instances. We therefore want to move the configuration of the network simu-
lators into our orchestration framework, where we can then easily configure
mixed-fidelity simulations and decompose bottleneck simulators transpar-
ently for the underlying simulators.

To this end, we propose a network simulator abstraction layer. The
abstraction layer introduces an abstraction of typical network systems in
the form of a network description. In the orchestration framework the ab-
straction layer creates network descriptions according to the specification
and implementation choices given by the user. The descriptions are subse-
quently given to the network simulators, which implement them into actual
network simulations. By adding SimBricks adapters to the abstraction, it
also lets us define connections to other simulators through SimBricks chan-
nels. This approach enables us to configure network simulators fully within
our orchestration framework, providing together with the rest of the orches-
tration framework a practical and easy way to assemble and run large scale
full-system network simulations.
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3.4 Integration Into SimBricks
We integrate our framework into SimBricks in order to make use of Sim-
Bricks’ ability to compose, configure and run full-system simulations, by
combining several simulators into one overall simulation. Our framework
extends SimBricks to overcome its limitations when it comes to large scale
full-system network simulations. For this, we mainly implement the part of
the network simulator abstraction layer that generates the network descrip-
tion, as part of the orchestration framework. This enables us to compose
mixed-fidelity simulations by flexibly choosing which components of the sim-
ulated system should be simulated by a network simulator at a protocol level
and which components should be simulated by a detailed component simu-
lator. Additionally, the framework provides an easy way to decompose the
network simulator into multiple partitions, which are in turn simulated in
separate processes. Finally, the framework allows us to predefine network
topologies enabling easy reuse of a topology in multiple network simulations.

3.4.1 Integrate Network Simulator Abstraction

The orchestration framework of SimBricks allows users to assemble and exe-
cute complex full-system simulations which involve multiple simulators. To
this end, the orchestration framework provides descriptions for each simu-
lator that is integrated into SimBricks. These descriptions are instantiated
and configured in a experiment script and subsequently translated into in-
vocations of the concrete simulators when the simulation is run. In order
to integrate the network simulator abstraction into the orchestration frame-
work, we add a set of building blocks that are used to assemble the network
system independent of the concrete network simulator. Special network
simulator descriptions take a network system assembled from the building
blocks and turns it into a proper invocation of the network simulator, pro-
viding the network description in the right format.

However, to connect the network simulator to other simulators and thus
be able to define full-system network simulations, we must also integrate the
connection to other simulators in our network description. To do this, we add
special components to our network description that describe the connection
to another simulator. Those components get linked to a simulator instance
so that the orchestration framework can provide both simulators with the
necessary parameters in order for them to establish a connection through
their SimBricks adapters during the simulation.

The SimBricks adapters in the supported network simulators use Eth-
ernet as the underlying protocol, which is also the typical protocol at the
boundaries of a network. This allows us to connect any other simulator that
uses Ethernet SimBricks adapters, including NIC simulators, host simula-
tors which also simulate the NIC internally, and other network simulators.
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As a consequence, this design gives us a lot of flexibility in how we can con-
nect other simulators to the network simulator to run full-system network
simulations.

3.4.2 Mixed-Fidelity Network Simulations
Mixed-fidelity network simulations are easily implemented using the net-
work simulator abstraction. The abstraction provides components that are
directly simulated by a network simulator and components that connect
the network simulator through a SimBricks channel to a dedicated detailed
simulator. To move a component from the less accurate network simulator
to a more detailed simulator, only one component in the network abstrac-
tion needs to be changed and linked to the dedicated simulator. The other
direction works in the same way.

3.4.3 Decompose Network Topology
To decompose the network topology into multiple parts the network ab-
straction is split into partitions. Each partition is then given to a separate
network simulator instance, which simulates the respective part of the net-
work. The connections that run between two partitions are implemented as
SimBricks channels between the corresponding simulator instances.

3.4.4 Predefined Network Topologies
The framework enables us to flexibly compose full-system network simula-
tions by piecing together building blocks from the network abstraction and
connecting other simulators. Although this gives us a lot of freedom, it might
be tedious to stitch together the network topology for every simulation from
scratch. Therefore we can build predefined network topologies that expose
simple interfaces and configuration parameters using the components from
the network abstraction. This enables us to quickly create network simu-
lations based on a predefined topology. Since the network topology is still
constructed from the same basic components, adapting and modifying it is
still easily possible. We can additionally provide partitioning strategies that
make it easy to parallelize and distribute the simulation among multiple
network simulator instances.

3.5 Integration Into Network Simulator
We integrate the part of the network simulator abstraction layer that parses
and realizes the network simulation into every network simulator that we
want to support. For that, we have to implement each of the basic building
blocks within the respective network simulator and provide sufficient glue
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code to combine the individual building blocks into a network simulation
according to the network description. In order to connect the network simu-
lator to other simulators via a SimBricks interface, we need to add a building
block that wraps the SimBricks adapter to establish a connection, given that
the adapter is already implemented. If an adapter for the simulator has not
yet been implemented, we must of course implement this first.

The network simulator only needs to implement the network description
that it receives. Everything else happens transparently for the network
simulator, such as scaling the network simulation by decomposing it. The
logic that takes care of how the full-system network simulation is assembled
and generally executed is located in the orchestration framework.
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Chapter 4

Implementation

The implementation is divided into two parts. One part is implemented
in the Python orchestration framework of SimBricks and the other part
is implemented in the network simulator. In this thesis we focus on the
network simulator ns-3 [21] and implement the network simulator part of
the framework only there. However, this part can also be implemented in a
similar way for other network simulators.

4.1 Network Description
4.1.1 Component Categories
The network description specifies all components of the simulated system
and how the components connect to each other. Although there are many
different types of components, we can group them into categories. First,
we have components that are responsible for connecting host or networks
with each other and enabling communication between them, such as net-
work switches and routers. Secondly, there are channels between connected
components, for instance wired connections with copper cables or wireless
connections with radio waves. These two categories form the backbone of a
network and provide the structure of the network topology. Next, we have
hosts that are connected to the network and applications that run on the
hosts in order to generate and consume network traffic. Additionally, we
use special categories that do not define network components, but let us
configure the simulation, such as enabling logging or defining a global stop
time for the simulation. One of those special categories are probes, which
we can enable and configure for some of the simulated components. Probes
let us record specific behavior of the network simulator in order to evaluate
the simulation. Currently, we use the following categories for our network
description.

• TopologyNode: components that handle the traffic flow in the net-
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--Category=[prefix-]key[(type)]:value;...

Figure 4.1: The format of the command line parameters providing the key-
value pairs that describe the components.

work like network switches or routers.

• TopologyChannel: channels between TopologyNodes.

• Network: connection to another network simulated by a separate
network simulator.

• Host: hosts in the network.

• Application: applications that run on the hosts and generate and
consume network traffic.

• Probe: probe that allows us to record specific behavior of the network
simulation for evaluation purposes.

• Global: global configuration parameters for the simulation, such as a
global stop time.

• Logging: configures the logging capabilities of the network simulator.

We use the separate category Network to specify connections to another
network simulator instance. However, we could move this to the category
TopologyChannel, because it is also just an Ethernet connection through a
SimBricks channel.

4.1.2 Network Description Format
We describe each component of the network through a set of key-value pairs.
These key-value pairs provide all the necessary information that is required
to instantiate and configure the component. They include fundamental in-
formation, such as the type of the component or the identifier for the com-
ponent. Additionally, they provide specific configurations for each network
component, for instance the latency of a link between two network switches.

In the case of ns-3, we pass the network description in the form of com-
mand line parameters. In order to parse the parameters, we make use of the
command line parser that is provided by ns-3. Figure 4.1 shows the principal
format of the command line parameters. We use the category to which the
respective component belongs as the name for the parameter. This allows us
to collect all components of a category in a separate list, while parsing the
parameters. The value of the command line parameters is the list of key-
value pairs, which we use for instantiating the components in the network
simulator.
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--Host=Id:/s1/host1;Type:SimpleNs3Host;Ip:10.1.0.2/24;...

Figure 4.2: An example for a command line parameter specifying a host
component.

switch1 switch2

host1

host2

host1
app

switch1 switch2

switch1/host1

switch1/host2 switch2/host1

switch2/host1/app

Figure 4.3: An example of a network topology with the IDs of the individual
components

The format lets us additionally specify a prefix, a type or both for a key-
value pair. The type helps the network simulator to convert the provided
value to the data type that is need for this specific attribute. The prefix
groups multiple key-value pairs, which enables us to flexibly set multiple
attributes for a subcomponent of the specified component, like for example
a queue which is part of the host. Both the prefix and the type are especially
helpful, when we make use of the attribution system of ns-3, which we will
explain in more detail in subsection 4.3.3.

An example for a concrete command line parameter is shown in Fig-
ure 4.2. The parameter specifies a host component, which is denoted by the
category Host. The value of the command line parameter is the list of key-
value pairs, including the ID and type of the component. In the example we
also specify that the host should use the IPv4 address 10.1.0.2/24.

Component IDs

Every component in the description receives a unique identifier, which also
reflects where in the network the component is located. To this end, a
component’s ID is actually a path that specifies its position in the network
which leads to a hierarchical description of the system.

Figure 4.3 shows an example for a small network topology with the
IDs for each component. At the top-level are components that build the
structure of a network, like network switches and links between them. In
the example, those are the network switches switch1 and switch2 and the
link with the ID link. Then, we have components that are connected to
the top-level components, such as the hosts in Figure 4.3. Since host1 is
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connected to switch1, we use the path switch1/host1 as the full ID for
this host. For the second host, that is connected to this switch, we choose
the name host2. Because the switch is the same, the first part of the ID
is also switch1, resulting in the full ID switch1/host2. The host that
is connected to switch2 is however also named host1. But this does not
lead to conflicting IDs, since the full ID switch2/host1 is again unique.
Therefore, we are allowed to have the same name for multiple components,
as long as they are at different locations resulting in unique IDs.

We continue the hierarchical structure by adding more levels to the path.
An application, for example, runs on a host, resulting in an ID path length
of 3. Thus, for the app in Figure 4.3 that runs on host1 which is connected
to switch2, we get the ID switch2/host1/app.

Component Type

The description of every component contains a key-value pair that specifies
the concrete type of the respective component, where the type indicates
which building block this is in the network simulator. There are, for example,
various different applications that we can run on the simulated hosts and the
type specifies which concrete application out of the available ones we want
to use. With this information, the network simulator knows which concrete
component it has to instantiate.

Component Configurations

For each component we can in principle give an arbitrary amount of key-
value pairs as configuration parameters. The network simulator uses these
parameters to configure the component during instantiation. The configu-
ration parameters are specific to each component and depend on what the
network simulator supports. For example, we can give a ping application
the IP address of the destination, whereas we can give a link between two
network switches the desired latency for that link. Some components may
require mandatory configuration parameters without which the component
cannot be instantiated.

4.2 Implementation in SimBricks
4.2.1 Current Limitations

The orchestration framework does not yet support a clean separation be-
tween specification and implementation for the components. However, we
provide the network abstraction as a first step towards the separation be-
tween specification and implementation, especially in regard to full-system
network simulations. Starting with an abstraction for the network simulator
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Figure 4.4: The class hierarchy used to implement the specification of a
network system.

makes sense, because it allows us to already create an abstract specification
of a network system. Later, we can further extend this to integrate other
simulators into the specification and implementation abstraction.

4.2.2 Network Specification

As part of our framework we integrate a set of classes into the orchestra-
tion framework of SimBricks which allow us to specify a network system.
From this specification, we can then generate one or more network descrip-
tions. For this, we implement a class for each supported component in
Python, which contains fields for configuring the component and a function
to generate this component’s description. We use inheritance as shown in
Figure 4.4 to specify common attributes only once and with that reduce the
implementation effort. For example, the class Base implements the logic of
creating a string representation of the command line parameter that we give
to ns-3 and the class Host sets the category to “Host”, so that all the specific
hosts use the correct command line parameter. We also see that the special
categories GlobalConfig and Logging do not inherit from the Component
class, because they are not actually components in the network.

Through the class Base every component has a list of components, which
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is used to capture the hierarchy of the network system. This means that
when we create an application to run on a host, we add the application
component to the host component. Similarly, we add host components to
TopologyNodes, for example. This allows us to capture how the components
are connected to each other, thereby creating the network structure. An
exception here are the TopologyChannels, which, like TopologyNodes, are
located at the top level of the hierarchy. We must explicitly give these the
TopologyNodes that the channel is supposed to connect with each other.

This approach further enables us to generate the path-like full IDs au-
tomatically. Instead of specifying the full ID manually while creating the
components, we give each component a name. After we have specified the
full network system, we can combine the individual names of the compo-
nents into the full ID. This can easily be done by traversing the system
hierarchy and recursively constructing the IDs.

In order to specify a connection through a SimBricks channel to another
simulator, we include special components in the network specification. Cur-
rently, we implement two components that let us connect the network sim-
ulator to another simulator: SimbricksHost is meant to connect a host that
is simulated by a separate simulator, such as the architectural simulator
gem5, to the network, whereas NetworkSimbricks is meant to connect an-
other network simulator instance to the specified network. Both components
require us to add the respective object from the orchestration framework,
which represents the simulator that we want to connect. The orchestration
can subsequently set up the SimBricks adapters on both ends to establish a
SimBricks channel between the simulators. Since both components are basi-
cally wrappers around the same SimBricks adapter using the same protocol,
we could also unify this in one component. However, using the more explicit
components, makes the network specification abstraction a bit cleaner, be-
cause it tells us what type of component is on the other end of the SimBricks
channel.

4.2.3 Integration as Simulator

The orchestration framework implements for every supported simulator a
class that can be instantiated and added to the full-system simulation in
the configuration script. The classes usually also let the user configure the
simulator by providing configuration parameters. In order to integrate our
network specification into the orchestration framework, so that we can use
it to configure and run a network simulator given the specification, we add
a separate class to the orchestration framework. This class receives the
network specification and takes care of launching the network simulator,
in our case ns-3, with the correctly formatted network description that is
generated by the specification. Additionally, the class provides plumbing
specifically for the orchestration framework to correctly launch and establish
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1 class DumbbellTopology ( Topology ) :
2
3 def __init__( s e l f ) :
4 s e l f . l e f t_sw i t ch = SwitchNode ( ” _le f tSwi tch ” )
5 s e l f . r ight_switch = SwitchNode ( ” _rightSwitch ” )
6 s e l f . l i n k = SimpleChannel ( ” _link ” )
7 s e l f . l i n k . l e f t_node = s e l f . l e f t_sw i t ch
8 s e l f . l i n k . right_node = s e l f . r ight_switch
9

10 def add_left_component ( s e l f , component ) :
11 s e l f . l e f t_sw i t ch . add_component ( component )
12
13 def add_right_component ( s e l f , component ) :
14 s e l f . r ight_switch . add_component ( component )
15
16 @property
17 def data_rate ( s e l f ) :
18 return s e l f . l i n k . data_rate
19
20 @data_rate . s e t t e r
21 def data_rate ( s e l f , data_rate ) :
22 s e l f . l i n k . data_rate = data_rate
23
24 . . .

Figure 4.5: Definition of a dumbbell topology using two switches and a bot-
tleneck link between them. The topology implementation provides functions
for adding components and setting attributes.

connections to other simulators for full-system simulations.

4.2.4 Predefined Network Topologies

With the network abstractions, we now also have the possibility to define the
basic structure of a network topology so that we can use it in later simula-
tions. For that, we assemble the backbone of the network with components
from the categories TopologyNode and TopologyChannel. Additionally, we
provide functions for adding hosts and possibly other components to create
a full network simulation from the defined topology. However, since we are
implementing this in Python and given the flexibility of the network specifi-
cation, we have a lot of freedom in how we can define the topology by using
Python language features and providing the user functions and attributes
to configure and instantiate the topology.
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As one simple example, we provide in our framework the definition of a
dumbbell topology. Figure 4.5 shows an excerpt of the implementation in
our framework. The constructor of the topology creates two switches and
a bottleneck link that connects the switches. Furthermore, the implemen-
tation includes two functions for attaching components such as hosts to the
topology. One function adds the components to the first switch and the
other one adds them to the second switch. Finally, the topology definition
also provides some configuration attributes, for instance for setting the data
rate and latency of the bottleneck link.

4.2.5 Mixed-Fidelity Simulations

The network abstraction enables us to implement mixed-fidelity simulations
fully within the orchestration framework. By choosing between different
component types in the network specification, we are able to either simulate
the component in the network simulator or via a dedicated component simu-
lator, that implements a more detailed model for the respective component.
In the current implementation we focused on host components in regard to
mixed-fidelity simulations. The network specification therefore offers a host
component that gets simulated directly in the network simulator and a host
component that uses the SimBricks adapter to connect a dedicated host
simulator. Since we make this selection in the orchestration framework, we
can easily decide for each host component with which accuracy we want to
simulate it, which is transparent for the underlying simulators.

Figure 4.6 exemplifies how to create a simple mixed-fidelity simulation
using the orchestration framework with the help of the network specifica-
tion. In the network specification, we specify that we want to simulate three
hosts with ns-3 and one host with dedicated simulators, which in this case
is the combination of a NIC simulator and an architectural simulator. For
that, we link the SimBricks host in the specification to a simulator object of
the orchestration framework. When running the simulation, the orchestra-
tion framework launches three simulator instances and establishes SimBricks
channels between them using the SimBricks adapters.

4.2.6 Decomposing Network Simulator

Decomposing the network simulator into multiple separate simulator in-
stances is similar to defining mixed-fidelity simulations. In order to de-
compose the simulator, we split the network specification along Topology-
Channels into multiple partitions, where each partition gets simulated by
a separate instance of the network simulator. To obtain the same net-
work topology as before, we need to replace all TopologyChannels that now
run between two instances with SimBricks channels. For this, the network
specification offers a component to denote a connection to another network
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simulator instance. This component also uses the SimBricks adapter, which
means that internally this is basically the same as connecting to a dedicated
simulator for mixed-fidelity experiments.

Implementing the specification in Python gives us again the advantage,
that we can easily implement a function that takes the specification of a
large network and splits it up into smaller parts according to a partition-
ing strategy, while automatically replacing affected TopologyChannels with
SimBricks channels. In particular, we can implement such functions for the
predefined network topologies so that users can easily parallelize them to
speed up the simulation.

Figure 4.7 shows an example for decomposing a network simulator by
splitting up the specification into two smaller specifications. In order to
replace the TopologyChannel that connects the two switches, we introduce
on each side a SimBricks Network component. When running the simulation,
each specification is simulated in a separate ns-3 process where the SimBricks
Network components are implemented by SimBricks adapters to establish
the necessary SimBricks Ethernet channel.

4.3 Implementation in Ns-3
For this thesis, we implement the network simulator part of the network
abstraction in ns-3. It is implemented as a new module in ns-3, which
is written in C++. The module provides implementations for the compo-
nents that are supported by our network specification, using the components
provided by ns-3. Additionally, the module implements logic to parse the
network description and assembling the simulation.

4.3.1 Processing Network Description
Ns-3 receives the network description in the form of command line param-
eters, and we use the command line parser that is integrated into ns-3 to
parse them. Since the network description can become very large and there
is a limit on the maximum length of a command on typical systems such as
Linux, we can also pass the description via a file. In this case, we specify the
path to the file that contains the description using a special command line
parameter and parse the parameters from this file using the command line
parser. While parsing the description, we split up the list of key-value pairs
and store them in a map for each component. The mapping from keys to
values allows us to easily access them later, when creating the components.
We also store all parsed components of one category, which we described in
subsection 4.1.1, in a list.

To assemble the network simulation from the description, we need to cre-
ate the components in ns-3 and connect them correctly. To make this step
easier, we create the components in the order specified by the ID paths. We
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start with the components on the highest level that have an ID path length
of one, then we create the components with an ID path length of two, and
so on. This makes sense because the components from a lower level must
be connected or added to components from the level above, which is easy
when the components from the higher levels already exist. In practice, this
means that we first create TopologyNodes, such as switches, and then Topol-
ogyChannels, which connect the TopologyNodes. Afterwards, we create the
hosts that are connected to the TopologyNodes and then the applications
which will be added to the hosts. We proceed in a similar way for the re-
maining component types. After we have assembled the network system
given by the description, we can run the actual simulation.

Of course, we also process the special components that specify global
configurations or logging and configure the network simulation accordingly.

4.3.2 Network Components

We implement the network components using the building blocks that are
provided by ns-3. Some of our components are just simple wrappers around
components in ns-3, such as the applications. The wrapper uses the key-
value pairs that are provided by the network description to configure the
ns-3 component. For more complex components, our implementation uses
multiple building blocks from ns-3 in order to realize the component in
the simulation. Furthermore, every component implementation provides
necessary code that allows us to connect the component to its parent.

In ns-3 there are two basic components that are used for most of the phys-
ical components: Node and NetDevice. The Node is used for any device in
the network, like hosts or network switches and the NetDevice handles send-
ing and receiving of network packets while it is attached to a Node. Together
with channels between NetDevices and software stacks that are aggregated
to the Nodes, we can implement a basic set of components that is sufficient to
create network simulations. For example, a network switch is implemented
as a ns-3 Node containing a special BridgeNetDevice which implements the
functionality of a simple switch. Figure 4.8 shows a simple network system
specifying the components of the abstraction and the ns-3 components that
are used for the implementation. Note that we do not show all ns-3 com-
ponents involved for reasons of clarity, however some of the components
actually include further components. As we have already mentioned, the
SwitchNode is implemented via a ns-3 Node containing a BridgeNetDevice.
We attach hosts to the SwitchNode by adding and connecting NetDevices
which connect to the actual host. In the case of the SimpleNs3Host, we
have a Node containing a SimpleNetDevice which is connected through a
SimpleChannel to another SimpleNetDevice. This whole construct is imple-
mented by the SimpleNs3Host component. The chosen abstraction makes
sense when we look at the SimBricksHost, which is implemented via the Sim-
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Figure 4.8: Overview of a simple network system showing both the compo-
nents of the network abstraction and the ns-3 components that are used to
realize the abstraction components.

35



BricksNetDevice. The SimBricksNetDevice is a NetDevice that wraps the
SimBricks adapter enabling communication through the SimBricks channel.
Therefore, the SimBricksNetDevice also connects another host, simulated
by a dedicated simulator, through a channel, giving us basically the same
abstraction as for the SimpleNs3Host.

For each component of our network abstraction, we implement a sep-
arate class in our ns-3 module. To simplify the process of assembling the
network system, we establish a class hierarchy that closely resembles the
class hierarchy of our network specification, which is shown in Figure 4.4.
To capture the hierarchy of the specified network, every component main-
tains a map that contains mappings for its child components with the name
of the child component as the key. This design allows us to traverse the
network system along a given path, which enables us, for example, to find
the parent of a component given its ID path. We leverage this while creating
the components in order to connect and add a component to its parent.

4.3.3 Setting Attributes

In addition to creating the network components, we also need to configure
them. To this end, we mostly leverage the attribute system of ns-3, which
can be used to provide a set of attributes for each component. We set and
access the attributes through keys in the form of strings. While creating
a component in our framework, we can look for specific key-value pairs
and either use them to set specific attributes or carry out more complex
processing and configuration of the component. For the remaining key-value
pairs we try to set them automatically through the attribute system. To do
this, we use the key and the value of the key-value pair also as the key and the
value for the attribute. This allows us to support many attributes without
having to implement special handlers for them, reducing implementation
effort. We only need to make sure to set the correct keys in the network
description so that ns-3 understands them.

Note that we give the value for an attribute always as a string. This
means that in many cases ns-3 needs to convert the string to a different
type that is required for this attribute. For example, if the type of the
attribute is an integer, the value string has to be converted to an integer
first, before we can set the attribute. Although ns-3 is able to convert the
string representation of the value for many types, we sometimes need to
use a custom type conversion, because there is no conversion available for
this specific type or our string representation of the value does not fit to the
conversion provided by ns-3. In case we need to use our own type conversion,
we provide a type with our key-value pair in the network description. While
setting the component attributes, we check for each key-value pair whether
it provides a type. If a type was found, we convert the string representation
of the value first using our own conversion and then use the converted value
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to set the attribute.
As we have already noted before, many of the network components that

are defined by our abstraction are actually implemented in ns-3 using mul-
tiple ns-3 components. When we want to automatically set the component
attributes based on the key-value pairs that are given by the network de-
scription, we do no longer know which key-value pair is meant for which ns-3
component. To overcome this issue, we prefix the keys of the key-value pairs
with an additional identifier that denotes the ns-3 component to which it
refers. This allows us to automatically configure multiple ns-3 components.

4.3.4 Attaching Probes
In order to evaluate and gain some insight into the network simulation,
we need to capture the behavior of the simulation. To do this, we can
attach probes to network components in our network specification, which
is supposed to record a specific behavior of the respective component. In
ns-3 we implement probes via TraceSources, which are callbacks that get
triggered at specific events, for example when a NetDevice received a packet.
Currently, we support a small set of probes that we can attach to specific
components. For their implementation we provide callback functions that
write the captured data into a file for later evaluation.
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Chapter 5

Experimental Evaluation

In our evaluation, we use the data center network protocol Homa [20] to
demonstrate how we can easily realize network simulations with our frame-
work and use techniques such as mixed-fidelity simulations and splitting
up the network topology to perform large scale simulations. In contrast to
well established transport protocols such as TCP [4] which focus on large
messages and aim to achieve maximal throughput, Homa focuses on small
messages in data center networks and tries to keep latencies for those mes-
sages as low as possible. Traditional protocols are often connection-based
and sequential which facilitates head-of-line blocking leading to inconsistent
and high latencies especially for small messages. Homa improves tail latency
for small messages by approximating SRPT (shortest remaining processing
time first) through using prioritization for messages and a receiver-driven
approach where the receiver informs the sender what and how much data to
send. To this end, Homa is connectionless, message-based, and uses priority
queues provided by modern network switches.

There exists an implementation of the Homa transport protocol in ns-3
[9], which we will use to generate Homa traffic in a network simulated by
ns-3. Additionally, there exists a Linux kernel module implementation of
Homa [10, 22], which also serves as the current reference implementation of
the protocol. In our experiments we run an unmodified version of the kernel
module on a Linux host simulated by an architectural simulator.

5.1 Experimental Setup
We run our experiments on a machine with 256 GB RAM and two Intel
Xeon Gold 6336Y CPUs with 24 physical cores each, giving a total of 48
physical cores. In order to keep the required resources low, we limit the
size of the simulations so that they fit on a single machine, but choose large
enough simulations that suffice for the evaluations. While we can distribute
the simulation among multiple machines using SimBricks proxies, we have
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Figure 5.1: The basic topology used for the experiments in this evaluation.

not found the need to do so for this evaluation.
To simulate the network we use a ns-3 implementation that includes

SimBricks adapters, the framework presented in this thesis, and the Homa
transport protocol. We use qemu with instruction counting for time syn-
chronization to simulate a Linux hosts in detail and run the Homa kernel
module. The simulated hosts use a single core, and they are configured with
4 GHz clock frequency and 2 GB of main memory. We use the NIC simula-
tor i40e_bm that is integrated into SimBricks which provides a behavioral
model for the Intel X710 NIC. An instance of the NIC simulator connects via
PCI to a host simulated by qemu and via Ethernet to the network simulated
by ns-3.

For our experiments we use the topology that is shown in Figure 5.1,
which is also used in a similar form for the evaluation of Homa using net-
work simulators. The topology consists of racks consisting of hosts and a
Top-Of-Rack (TOR) switch and an aggregation switch that connects to all
TOR switches. Each link has a latency of 250 ns and the links between
TOR and aggregation switch have a bandwidth of 10 Gbps. The origi-
nal topology uses four aggregation switches where each aggregation switch
connects to every TOR switch with 40 Gbps links, resulting in multiple
available paths between two hosts. However, the BridgeNetDevice that we
use to implement a network switch in ns-3 can not handle multiple paths
correctly, resulting in switching loops creating broadcast storms. We there-
fore use only one aggregation switch but in turn increase the bandwidth of
the links between aggregation switch and TOR switches to 160 Gbps. The
evaluation of Homa that was carried out on physical testbeds uses a simpler
topology that connects all hosts to a single switch. During our evaluation
we found however that the two topologies lead to only slightly different re-
sults. Since the topology shown in Figure 5.1 also allows us to decompose
and parallelize the network, we opt to use it throughout our experiments. A
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network consisting of a single switch would not allow us to split up the net-
work simulator, because this would require us to decompose a single network
component, which we not support.

5.2 Full-System Simulation Is Necessary

When we want to evaluate the Homa transport protocol, we have a few dif-
ferent options to do so. On the one hand, we could use a physical testbed
using the Linux kernel implementation of the protocol. But this is often
not feasible because it requires a physical system to be available. On the
other hand, we can resort to simulation, for example using a network simu-
lator such as ns-3. However, the ns-3 implementation of the Homa protocol
comes with some drawbacks and differs from the Linux kernel module imple-
mentation which serves as the reference implementation. Using full-system
simulation enables us to combine the network simulator with an architec-
tural simulator such as qemu that is able to execute a full Linux operating
system including kernel modules. Thus, full-system simulation allows us to
run the Homa kernel module in simulation while also modelling the network
part at the same time. Therefore, if we want to use an implementation that
closely matches the reference without the effort of manually adapting the
ns-3 implementation, we need to use full-system simulation.

For example, for the evaluation of Homa Montazeri et al. used different
workloads [20]. One of the workloads represents the network traffic of a
Hadoop cluster at Facebook [26], which contains many messages that are
smaller than the size of a single network packet. However, the ns-3 im-
plementation currently only supports sending messages with sizes that are
multiples of the size of a packet, which means that the smallest supported
message has the size of a full network packet. The same limitation does not
exist for the Homa kernel module. If we want to run this workload with-
out changing the implementation of the Homa protocol, we need to use the
kernel module.

In Figure 5.2 we compare the evaluation of the previously mentioned
workload on a physical testbed with our full-system simulation, where the
results for the physical testbed are taken from [22]. For our simulation,
we use the topology shown in Figure 5.1 with 20 hosts evenly distributed
across four racks. Every host serves as both a client and a sever with each
of them randomly sending messages to all hosts except themselves. We
simulate all hosts with qemu using the Homa kernel module and evaluate
the measured slowdown for each message size that occurs in the workload.
The slowdown tells us how much more time it took to successfully transmit
the message compared to an optimal case with no traffic in the network. It
is calculated by dividing the measured transmission time by the best-case
transmission time. We see that the general trend of the slowdown curves is
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Figure 5.2: Median and 99th-percentile slowdowns for Homa traffic evalu-
ated with full-system simulation and a physical testbed. The x-axis is linear
in the number of sent messages with the respective size. The results of the
physical testbed are taken from [22].
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1 for i in range ( s e l f . params [ ’ n_racks ’ ] ) :
2 sw = SwitchNode ( f ’ _tor{ i } ’ )
3 sw . mtu = s e l f . params [ ’mtu ’ ]
4 s e l f . tor_switches . append ( sw)
5 s e l f . sw i t che s . append ( sw)

Figure 5.3: Creating a given amount of TOR switches in a loop.

similar for both evaluation platforms. However, the full-system simulation
incurs high transmission times for some messages, which leads to a slightly
higher median and a very high 99th-percentile slowdown compared to the
physical testbed. Unfortunately, we have not been able yet to find the root
cause of this issue. Nevertheless, this does not detract from the significance
of the other results in this evaluation.

5.3 Composing Network Simulations Is Easy

We show that it is easy to compose large scale network simulations within
the orchestration framework using the framework presented in this thesis.
It requires only little code changes to configure mixed-fidelity simulations
or to decompose and parallelize a network simulator. In the following, we
want to analyze how much implementation effort it requires to compose and
configure those simulations.

In the course of this evaluation, we implemented the topology from Fig-
ure 5.1 as a predefined topology in our framework that uses parameters to
instantiate different configurations. This enables us to reuse the topology
throughout the experiments that we conduct and instantiate systems of dif-
ferent sizes by choosing the number of racks and hosts per rack. The basic
structure of the network spanning the switches and the links between them
is implemented in roughly 40 lines of code independent of the concrete size
of the topology. Since many of the components in the network are almost
the same as other components, we can use loops so that we basically only
have to implement it once and then generate an arbitrary number of the
components. The TOR switches, for example, are generated as shown in
Figure 5.3 given the number of racks. In addition to that, the predefined
topology provides functions for adding hosts simulated in ns-3 and hosts
simulated by a dedicated component simulator. Furthermore, this allows us
to provide help functions, for instance a function that fills up the topology
with hosts simulated in ns-3 running a specific application.

Thanks to the predefined network topology, we can conduct mixed-
fidelity simulations with little effort. Currently, to use different simulators
for hosts we need to instantiate and configure different host components of
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Figure 5.4: An example for a mixed-fidelity configuration using 10 qemu
hosts and 10 ns-3 hosts.

the orchestration framework or the network abstraction, but we can then
add the host to the topology by calling an appropriate function. The amount
of code that is required to create and configure a host depends on the exact
use case, but it can be as little as 10 lines. Therefore, switching hosts from a
detailed architectural simulator to a network simulator that simulates them
at the protocol level, takes only a few code changes. Furthermore, with
the use of loops or functions, switching components from one simulator to
a different one boils down to changing only a few lines of code or possibly
even one line of code. This is possible because we carry out all the required
changes in the orchestration framework, and we do not have to configure a
simulator directly.

We have a similar case for decomposing network simulators. Given the
predefined network topology, we can partition it by assigning the switches to
different partitions. A generic function takes the partitions and distributes
them across separate network simulator instances while replacing links with
SimBricks adapters. In order to split the network topology we only need
to provide a partitioning strategy. Simple partitioning strategies can be
expressed in a single line of code, but more complex strategies usually also
take only a few lines of code. Thus, decomposing the network simulator is
effectively done within a handful lines of code.

5.4 Mixed-Fidelity Simulations Are Cheap

Next, we want to show that mixed-fidelity simulations help to reduce the
amount of compute resources that are necessary to run the simulation. For
that, we run five different configurations of mixed-fidelity simulations that
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Configuration (qemu/ns-3) #Processes Simulation Time [minutes]
20/0 41 64
15/5 31 72
10/10 21 74
6/14 13 75
2/18 5 71

Table 5.1: The required number of simulator processes and the simulation
time for different mixed-fidelity configurations.

use varying amounts of detailed qemu hosts which record the data for the
evaluation and ns-3 hosts which generate Homa background traffic. We use
again a total of 20 hosts evenly distributed among four racks. To set up
a mixed-fidelity configuration, we first assign the desired number of qemu
hosts randomly to the network topology. Then, we fill up the remaining
spots in the topology with ns-3 hosts. Figure 5.4 shows an example for how
a mixed-fidelity configuration using 10 qemu hosts and 10 ns-3 hosts could
look like. For the extreme cases, we have one configuration that uses 20
qemu hosts but no ns-3 hosts and one configuration with only two qemu
hosts communicating and 18 ns-3 hosts. For the other configurations we
choose 15, 10, and 6 qemu hosts.

Because of the different implementations of the Homa protocol in ns-
3 and the kernel module, we limit communication to hosts of the same
type. This means, that all the qemu hosts communicate with each other
and all the ns-3 hosts communicate with each other, but there is no cross-
communication between the two.

The required resources for the mixed-fidelity configurations are summa-
rized in Table 5.1. The table shows for each configuration the number of
needed processes and how long the simulation took to complete. The num-
ber of processes directly translates to the required number of physical cores,
because SimBricks adapters use busy polling. We can easily calculate the
amount of processes one of these mixed-fidelity simulation spawns. Each
qemu host launches an instance of the qemu simulator and additionally an
instance of a NIC simulator. The network is always simulated in a sin-
gle process for the given configurations. Therefore, reducing the number
of qemu hosts by one, saves two simulator processes, which means that re-
ducing the amount of qemu hosts also reduces the required physical cores.
The smallest configuration using two qemu hosts requires only 5 physical
cores so that it could be easily executed on a modern laptop. The runtime
of the simulation is similar for all configurations and the differences seem
to be regular fluctuations. Note, that the total runtime of a synchronized
simulation is determined by its slowest simulator, which means that adding
more hosts to the network simulator could make it the bottleneck. In or-
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der to analyze this further we would need to profile the simulators such
that we obtain information about how busy a simulator is and how much
time it spends waiting for other simulators. However, this goes beyond the
evaluation point that we want to make here.

5.5 Mixed-Fidelity Simulations Are Still Accurate
section 5.4 showed that mixed-fidelity simulations help to keep the amount of
required compute resources low. Now we want to show that they still provide
sufficient accuracy. To do this, we use the same mixed-fidelity configurations
as in section 5.4. However, this time we will evaluate the communication
between the qemu hosts by looking again at the slowdowns for the different
message lengths.

Figure 5.5 shows the measured median and 99th-percentile slowdowns
for the different mixed-fidelity configuration. Note that we omit the configu-
ration for 15 qemu hosts and 5 ns-3 hosts out of brevity, however the results
are very similar to the configuration with 20 qemu hosts and no ns-3 hosts.
We observe that with an increasing amount of qemu hosts the measured
slowdowns look more stable and smooth compared to configurations that
use more ns-3 hosts. This is because there are more detailed qemu hosts
communicating with each other and recording the data for the evaluation.
But we also see that the general shape of the graphs remains the same for all
configurations. Therefore, configurations with only a few qemu host, which
require fewer resources as we showed in section 5.4, are still accurate enough
to observe the general trend of the slowdown curves. For more stable and
accurate results, we have to increase the number of qemu hosts requiring
more compute resources. Overall, this gives us a trade-off between com-
pute resources and accuracy that we can decide based on our needs. For
example, a configuration that lies in the middle of the two extremes could
be a good option to keep the required compute resources low while offering
decent accuracy.

5.6 Simulations Scale by Decomposing Simulators
Finally, we want to show that we can scale the simulation by decompos-
ing and parallelizing bottleneck simulators. To this end, we focus on de-
composing the network simulator by partitioning the network topology and
simulating each partition in its own network simulator instance. As al-
ready explained in section 5.3 our framework enables us to define and use
partitioning strategies within a few lines of code, which makes parallelizing
the network simulator an easy endeavor. In this evaluation, we show two
cases where we can reduce the total simulation time by splitting the net-
work topology. For both cases we analyze the three partitioning strategies
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20 Qemu Hosts / 0 ns-3 Hosts

10 Qemu Hosts / 10 ns-3 Hosts

6 Qemu Hosts / 14 ns-3 Hosts

2 Qemu Hosts / 18 ns-3 Hosts

Figure 5.5: Median and 99th-percentile slowdowns measured for different
mixed-fidelity configurations.
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Figure 5.6: Three partitioning strategies for the network topology that is
used for the evaluation. The partitions are marked with red boxes.
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Partitioning Strategy #Processes Simulation Time [minutes]
1 41 102
2 43 77
3 45 62

Table 5.2: The required number of processes and the simulation time for
three different partitioning strategies of a full-system network simulation
with 20 hosts. All hosts are simulated with qemu.

Partitioning Strategy #Processes Simulation Time [minutes]
1 1 436
2 3 220
3 10 44

Table 5.3: The required number of processes and the simulation time for
three different partitioning strategies of a network simulation with 144 hosts.
All hosts are simulated in ns-3.

that are shown in Figure 5.6. The first and simplest partitioning defines one
partition for the entire network. The second strategy uses three partitions,
with the aggregation switches in one and half of the racks in each of the
other two partitions. The last partitioning puts each rack in one partition
and the aggregation switches in a separate one.

For the first case, we look at a full-system network simulation with 20
hosts distributed among four racks generating Homa traffic where each of
them is simulated by qemu. The network simulator models only the switches
and the links between them. We run for each partitioning strategy one simu-
lation with the results being presented in Table 5.2. For each configuration,
we need 40 processes to simulate the hosts. Depending on the selected par-
titioning, we then need either one, three or five additional processes for the
network. In regard to the simulation time, we observe that the simulation
finishes in less time the more partitions we use for the network. Although
the network simulator merely models switches and links, it has to communi-
cate and synchronize with all 40 hosts using SimBricks channels. The heavy
synchronization with a single simulator therefore slows down the whole sim-
ulation leading to longer simulation times. Splitting the network among
multiple network simulator instances reduces the number of simulators each
instance has to communicate and synchronize with. Thus, the simulation
time decreases by parallelizing the network simulator.

For the second case, we look at a network simulation that simulates all
hosts in ns-3 and does not use any dedicated simulator. For this, we choose
a larger setup with nine racks containing 16 hosts each, giving a total of
144 hosts. We run again three simulations for the different partitioning
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Figure 5.7: Median and 99th-percentile slowdowns for two partitioning
strategies of the same simulated system.

strategies and present the results in Table 5.3. As in the previous case, we
need one and three network instances respectively for the first two configu-
rations. Since we have now nine racks, we need ten processes for the third
partitioning strategy. Once more we observe that the simulation time de-
creases when increasing the number of partitions. However, this time the
reason is not communication and synchronization through SimBricks chan-
nels, but the network simulator has to carry out a lot of computation. By
splitting the topology among multiple simulator instances, we effectively
parallelize and distribute the computation across multiple processes. This
leads to a decrease of the simulation time while increasing the number of
required physical cores.

Finally, we show that parallelizing the network simulator does not affect
the results of the simulation. To this end, we compare the measured slow-
downs for partitioning strategies one and three using our network topology
with 20 qemu hosts and no ns-3 hosts. As we can see from Figure 5.7 the
curves for the median and the 99th-percentile slowdowns are basically the
same for both partitioning strategies. Therefore, parallelizing the simula-
tion by decomposing the network simulator does not influence the overall
behavior of the simulation.
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Chapter 6

Related Work

6.1 Discrete Event Network Simulator
The predominant simulator type for network simulators is the discrete event
simulator [11, 24, 28]. These simulators typically model the network at the
packet level using discrete events, resulting in a good representation of the
network behavior in regard to how packets are processed and move through
the network. However, while they are good at capturing the network behav-
ior at the packet level, they do not implement detailed models for devices and
hosts in order to capture the architectural behavior of them. This prevents
us from capturing the full end-to-end behavior of the system. We therefore
use modular simulation to combine multiple different simulator into a full-
system simulation enabling end-to-end evaluations. Furthermore, discrete
event simulators keep events in an event queue sorted by timestamps and
process them sequentially. The sequential processing results in increasing
simulation time when increasing the size of the simulated system. Because
of this, some network simulators enable users to parallelize the simulation
by providing a solution that is specific to the simulator’s design. For exam-
ple the network simulator ns-3 [24] partitions the network and distributes it
across multiple processes. To enable communication between the separate
processes, ns-3 uses the Message Passing Interface (MPI) [19]. However, the
parallelization capabilities offered by network simulators often scale poorly
[32] and they are specific to the respective network simulator. With our
framework, we provide parallelization that is transparent to the underly-
ing simulators and uses efficient SimBricks channels for communication and
synchronization.

6.2 Physical Testbeds
Physical testbeds enable a system to be evaluated in a real environment, giv-
ing representative results. But one of the big disadvantages is that physical
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testbeds are often not available, especially on a large scale. However, there
are approaches to change this, for instance Pantheon [30], PlanetLab [5] or
Emulab/Netbed [29]. They provide shared physical testbeds that enable
researchers to evaluate, for example, transport protocols or congestion con-
trol algorithms in real network systems. For that, they maintain network
nodes or clusters in realistic systems that can be used to execute custom
workloads and network software stacks. For example, Pantheon consists of
a realistic testbed comprised of network nodes distributed all over the world
in order to evaluate network systems end-to-end on real network paths. Fur-
thermore, these platforms frequently provide additional tooling that makes
configuring and using the provided testbeds easier. Although these physi-
cal testbeds provide a variety of different network systems, such as wired
or wireless networks, we still have only limited control over the system.
In case we need a specific network topology or specialized hardware, those
testbeds fail to meet our requirements which makes them not helpful. How-
ever, with our framework we leverage modular simulation to provide large
scale full-system network simulations. This enables us to evaluate network
systems end-to-end, while giving the flexibility of modelling a wide variety
of systems.

6.3 Simulation With Physical System

One drawback of simulation is that it typically takes a lot of implementa-
tion effort to replicate the behavior of the system. This is already the case
if we want to model the functional behavior and provide the same interfaces
as the real system so that we can run unmodified software, for example.
Combinations of physical and simulated or virtual systems can provide a
solution to this problem. Mininet [15] uses lightweight virtualization with
Linux namespaces to run hosts, software models of switches and virtual
Ethernet connections. It models the functional behavior of the system and
runs interactively, which is often also described as emulation. Dummynet
[25] combines a physical system with simulation by intercepting an appli-
cation’s network communication at the protocol layer and simulating the
behavior of the network, such as bandwidth limitations and latencies. This
allows running unmodified applications interacting with the real network
protocols while giving the opportunity to freely model the network. Simi-
larly, the ns-3 extension Direct Code Execution (DCE) [27] enables us to
run almost unmodified applications and network protocols basically natively
on the machine in conjunction with the network simulator ns-3. For that
DCE intercepts, like Dummynet, the network communication and sends it
through the simulated network. By using modular simulation that combines
multiple simulators into one simulation, we can leverage appropriate simu-
lators that are able to run unmodified applications and software stacks, such
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as architectural simulators [2, 23]. Leveraging the physical system provides
a fast way to obtain a functional model of a component, but it does not
provide deep insight and prohibits exact performance measurements, which
are provided by end-to-end simulation.

6.4 Network Performance Estimator
Apart from simulation and physical testbeds, theoretical models [6] can be
used to estimate specific behaviors of the network system such as throughput
and latency. Theoretical models allow us to compute metrics even for large
scale networks within a few minutes, where packet-level simulators such
as ns-3 and OMNeT++ take hours or days. However, they only calculate
key metrics of the system and do not offer the same visibility as network
simulators. Instead of theoretical models other solutions leverage machine
learning models to decrease the computational effort that is required for
network simulations [13, 31, 32]. By learning the behavior of some parts
of the systems using machine learning models and subsequently replacing
the respective part with the learned model in the simulation, the runtime
of large scale network simulations can decrease significantly. However, this
approach can not provide end-to-end application performance. Additionally,
it is trained for one specific network configuration so that changing the
configuration typically requires re-learning the model, making it inflexible
to use.
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Chapter 7

Future Work

7.1 Separation Between Specification and Imple-
mentation

In our design, we proposed to split the definition of a full-system simula-
tion into a specification and an implementation. The specification should
describe the system that we want to simulate, whereas the implementation
specifies how we simulate it. The network abstraction that we propose in
this thesis is a first step into the direction of separating specification and
implementation by providing a mostly simulator-independent network spec-
ification. In a second step, we decide how we want to simulate the specified
network, for example by choosing which network simulator to use. How-
ever, the current implementation of the orchestration framework does not
yet fully support this separation for the rest of the system. Instead, many
components of the orchestration framework are used as the specification for
a system component while also defining how this component is simulated. In
the future we want to implement this separation for all components of the or-
chestration framework and provide it as a general abstraction in SimBricks.
This will make it even easier and more practical to define and assemble
large scale full-system network simulations. The separation will allow us to
define the system once and afterwards let us select different concrete imple-
mentations depending on our needs, such as simulation detail or simulation
time.

7.2 Extend Network Abstraction
Currently, the network abstraction supports only fundamental components
that are sufficient to define basic networks systems. Typical network simu-
lators offer a rich library of network components, different types of commu-
nication channels, and advanced features, such as modelling transmission
errors. Therefore, we want to further extend the network abstraction in
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the future, in order to support more features of the network simulators. To
do this, we need to expand our network specification in the orchestration
framework so that we are able to specify a greater variety of network sys-
tems. At the same time, we have to add support for more components and
advanced features to the part of our framework that is implemented in the
network simulator to be able to use them in our network abstraction.

7.3 Extend Network Simulator Support
As of right now, we only support the network simulator ns-3. In the future
we want to add more network simulators to our framework. For that, we
need to implement the network abstraction in each network simulator that
we want to support. However, the current implementation of the network
specification and the generation of the network description were mainly de-
signed with the goal of supporting ns-3. This means, that we might have to
adapt the network specification and the format of the description in order to
support other network simulators. For this, we could add another abstrac-
tion layer between the network specification and the simulator, which takes
care of generating a description that the respective simulator is able to un-
derstand. This abstraction layer might also have to “translate” parts of the
specification to accommodate for the different feature sets and abstractions
of the various network simulators.
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Chapter 8

Conclusion

In this thesis we presented a framework that enables practical large scale full-
system network simulations. It addresses the shortcomings of full-system
simulation for large scale networks that are high needs for compute resources
and long simulation times. The framework separates the specification and
the implementation of the simulated system in order to provide a clean
abstraction between the description of the system and its implementation.
With the main focus on network simulations, it provides an abstraction for
network simulators that allows the network to be specified independently
of the simulator. The abstraction also enables the easy creation of mixed-
fidelity simulations and splitting the network topology into multiple parti-
tions, each simulated by a separate network simulator instance. Through
the abstraction the simulation is assembled and configured without hav-
ing to configure the respective simulators directly. In order to combine
multiple simulators into a full-system simulation, the framework integrates
into SimBricks. In the evaluation we were able to show how easy it is to
assemble full-system network simulations and configure mixed-fidelity and
parallelized simulations using the framework. Furthermore, we have shown
that mixed-fidelity simulations and decomposing bottleneck simulators re-
duce the required amount of compute resources and simulation time, while
still providing accurate results.
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