
Online Specialization of Systems with Iridescent
Vaastav Anand (vaastav@mpi-sws.org)

Deepak Garg (dg@mpi-sws.org) 

Antoine Kaufmann (antoinek@mpi-sws.org)

Modern cloud systems make trade-offs 

between flexibility and performance

Idea: Specialize and optimize code (by 

recompiling) at runtime!

Performance depends on 3 factors

Workload Deployment Environment Config Params

Workload A Workload B

Iridescent provides 4 building blocks

Spec. Points Spec. Runtime Explorer Policy

Matrix Size: n

Block Size: s

Observation 1: Optimal Config 
changes with workload + deployment

Observation 2: Optimal performance 
requires compile-time changes

n=1024 n=256 n=64

Machine A 32 32 32

Machine B 16 16 4

Machine C 16 16 4

Machine D 32 4 4

Machine E p-

core

32 4 2

Machine E e-

core

64 4 4

Exploration 1 Exploration 2

Network Address Translator

Deployment Runtime : Compiler 

Cost Ratio

Machine A 1.61x

Machine B 2.62x

Machine C 2.64x

Machine D 3.48x

Machine E p-

core

3.36x

Machine E e-

core

2.69x

Exploration 1 Exploration 2

Selection Selection

Different batch sizes Different batch sizes

Specialization Points

Specialization Runtime

Explorer Policy

Memory access pattern decided by 
Matrix Size and Block Size

Provide API to developers to indicate 
specialization points in their 

codebase

Parameters or variables in 
performance critical code that can 
be changed or made constant during 
execution to improve performance

E
x
a

m
p

le

Iteratively explores different 

specialization for the various 
specialization points

Selects the best performing 
specialization and finalizes 

the handler code to use it

Defines the specialization 

space to explore

Defines the selection criteria 
(the end-to-end 
measurement to optimize)

Provides exploration params

Inputs: Code with specialization points

LLVM JIT recompiles the modified handler 
code with compiler optimizations

Analyzer tracks the state of all the 
specialization points in the input code

Specializer modifies the handler to 
specialize selected specialization points

Hooks control 
runtime and 

allow points to 
be selected for 
specialization

Output: Specialized and optimized code

Only compile and optimize 

the code that is affected by 
the specialization points

Converting config 

parameters into 
compile time 

constants requires 
fewer cycles to do 1 
multiplication as 

compared to 
leaving them as 

runtime parameters

D
e

p
lo

y
m

e
n

t

Workload


	Slide 1

