
SAARLAND UNIVERSITY

Master Thesis

Embedded Systems M.Sc.

Modular Full-System Simulation for
Cyber-Physical Systems

Author: Gideon Mohr
First Reviewer: Dr. Antoine Kaufmann
Second Reviewer: Prof. Dr. Martina Maggio
Advisor: Artem Ageev
Submission Date: 07.08.2025

Faculty of Mathematics and Computer Science

Department of Computer Science

Max Planck Institute for Software Systems

Operating Systems Group

https://uni-saarland.de/
https://uni-saarland.de/fakultaet/mi.html
https://saarland-informatics-campus.de/
https://mpi-sws.org/
https://os.mpi-sws.org/

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 07.08.2025

 (Gideon Mohr)

iii

Abstract

Cyber-Physical Systems (CPS) are frequently used in safety-critical settings,
where mistakes in the hardware configuration or software bugs can result in
significant costs increases or even threat public safety.

Frequently, such issues stem from the interaction between multiple components
and do not appear when each component is tested in isolation. As a result,
comprehensive system-level testing is essential to identify those faults early in the
development process.

Virtual prototyping using simulation can help avoiding these issues before deploy-
ment by accurately modeling all involved components. This technique is already
widely used when designing cloud infrastructure or when developing custom
hardware components like accelerators.

However, unlike software systems, CPS also require a precise simulation of their
physical environment alongside the simulation of the control logic. Existing simu-
lators model this interaction at a low fidelity failing to capture certain errors that
are just visible on certain hardware configurations, require specific environmental
circumstances or need precise timing to make an impact.

This thesis proposes an extension of the SimBricks simulation framework allowing
for a modular full-system simulation of CPS. The new physical interface connects
a physical simulator with simulators supported in the SimBricks ecosystem. The
synchronization mechanisms in SimBricks allow to keep the physical simulation
in sync with the simulation of the software, thus eliminating the dependency of
the simulation results on the simulation hardware. This approach is evaluated
using the Gazebo simulator with ArduPilot, a widely used controller for unmanned
aerial vehicles (UAVs).

v

Contents

Abstract . v
Contents . vii
1 Introduction . 1
2 Background . 3

2.1 Cyber-Physical Systems . 3
2.1.1 CPS Control Platforms . 5

2.2 Full-System Simulation . 5
2.2.1 Full-System Simulation in SimBricks . 6

2.3 Physics Simulation . 8
3 Motivation . 13
4 Design . 15

4.1 Requirements . 15
4.2 An Interface for Physical Simulators . 16
4.3 Limitations . 18

5 Implementation . 21
5.1 Protocol . 21

5.1.1 The intro messages . 21
5.1.2 The Configuration Phase . 22
5.1.3 Exchanging Values . 22

5.2 Gazebo Integration . 23
5.3 gem5 Integration . 25

6 Evaluation . 29
6.1 Setup . 29
6.2 RQ1: Evaluating Hardware Configurations . 30
6.3 RQ2: Detecting Previously Undetectable Bugs . 32
6.4 RQ3 & RQ4: Performance & Scalability . 34
6.5 RQ5: Implementation Effort . 37

7 Related Work . 39
8 Discussion and Future Work . 41

8.1 Improving the performance of the physical simulation 41
8.2 Simulating external conditions . 42
8.3 Validating the accuracy of the simulation . 42
8.4 Choice of the right simulator . 43

9 Conclusion . 45
Glossary . I
List of Figures . V

vii

List of Tables . V
List of Code Listings . VI
Bibliography . VII

viii

1 Introduction

Cyber-Physical Systems (CPS) have become a crucial part of our day-to-day life
over the last decades. The ongoing digitalization of our society lead to an increasing
amount of electronic devices that feature digital components and interact with the
environment using sensors and actuators.

However, beyond consumer electronics, CPS are important for many different,
usually safety-critical applications. In aviation correct interaction of sensors, tur-
bines or propellers and the interfaces communicating the current state to the pilot
are crucial for safe and secure operation of an aircraft. Similarly, in astronautics
many missions rely on the correct behavior of spacecraft or satellites which usually
cannot be patched easily in case of errors once the devices are launched. A mission
failure due to bugs in software or hardware may result very costly and could
cause significant delays in the initial timeline. For example, the Ariane 5 mission
failed partially due to an unexpected horizontal velocity [1] which caused a chain
of failures leading to a dangerous change of trajectory and a destruction of the
spacecraft. Apart from aerial vehicles, other CPS might also operate in safety-
critical environments or are hard to patch once widely deployed. For example,
bugs in the software of industrial robotic applications may put the life of factory
workers at risk when heavy robotic arms behave unpredictably.

Consequently, extensive testing of software, hardware and their interactions
is required before the deployment of CPS in safety-critical applications. To test
software and hardware individually, there are many different frameworks that have
proven to work pretty well at identifying possible problems ahead of deployment.
However, some problems might only arise in certain interactions of different
components which can hardly be found when testing those components in isolation
since those faults might only be triggered by rare and very specific external
inputs. In some situations, interfaces between components may not adhere to their
specifications or may be interpreted inconsistently. When tests are performed in
isolation and based on similar assumptions, such mismatches are unlikely to be
detected.

To increase the likelihood of identifying those inputs and uncovering those
faults, thorough testing of each component with many different inputs is required.
Such a testing strategy might also involve narrowing down the space of possible
inputs by using mathematical models of the environment and other component.

1

Those models must also account for noise possibly introduced by sensors to avoid
excluding slightly inaccurate yet realistic inputs. As a result, such approaches
must conservatively over-approximate noise levels and input ranges which can
sometimes suggest the need for better, less noisy hardware components that are
potentially more expensive and thus unnecessarily increase the production cost of
the final CPS.

To avoid such issues, it is desirable to develop and use testing frameworks
that integrate different components to avoid relying on isolated tests of every
component and to improve the accuracy of the simulation and boost the confidence
in the results obtained from those tests.

There are various different approaches to test CPS at the software level using
Software in the Loop (SITL) testing. However, usually there are some drawbacks
with those solutions. Some of those solutions are tailored to test for specific
properties of a system and thus cannot easily be reused on other systems or
for other properties. Some simulators also operate at a high level of abstraction
making it impossible to detect certain bugs since their root cause may no longer
appear in the abstraction.

This project introduces a simple yet flexible framework that allows full-
system simulation for different kinds of CPS. The framework makes use of prior
work on SimBricks extending it to allow interactions with a simulated physical
environment. This approach allows to easily integrate new devices and new
control software resulting in a flexible environment to prototype CPS, test specific
combinations of hardware configurations, environmental conditions and model the
interaction of various CPS even for large-scale deployments.

Since all components are simulated in software, no expensive hardware is
required while still allowing to test at a high fidelity that previous work fails to
provide.

Before motivating this work further in Chapter 3, Chapter 2 introduces the
necessary background. Subsequently, Chapter 4 proposes the concrete design of
the integration into the existing SimBricks framework and Chapter 5 provides
details on how this design has been implemented for the evaluation presented in
Chapter 6. Throughout this project, the integration of ArduPilot (an open-source
control framework for autonomous vehicles) with the physics simulator Gazebo
served as a case study to evaluate this framework.

2

2 Background

Developing Cyber-Physical Systems (CPS) is a complex task as their design
involves developing the software, choosing appropriate hardware while taking the
implications of the physical environment into account. This chapter first introduces
the challenges that arise when designing CPS (Section 2.1), introduces full-system
simulation (Section 2.2) and describes how the physical environment can be
simulated (Section 2.3).

2.1 Cyber-Physical Systems
CPS come in many different shapes and are an indispensable part of our daily life.
Generally, the term refers to systems with digital components, i.e. a processing
unit that interfaces in some way with its physical environment. This is usually
done using sensors and/or actuators that are connected to the device. The sensor
readings are then used by the digital controller to decide how the actuators should
behave. In the majority of implementations, this is achieved by a periodic control
loop that queries the current sensor readings, updates the internal state estimation
and then decides on certain actions to move the system towards the desired state.

Common examples for CPS include (partially) autonomous vehicles such as
rovers, planes, or drones. Those systems use sensors to evaluate their environment
to find the correct path of movement for their mission and use their motors to move
towards the desired location. However, also “traditional” vehicles such as cars and
airplanes are considered to be CPS despite being manually operated. Sensor data
needs to be constantly and timely provided to the operator and some systems like
airbags need to automatically activate under certain conditions. Industrial robots
are another group of CPS which usually complete repetitive tasks in manufacturing
or logistics. Apart from the actual manufacturing process which requires sensors
and actuators to accomplish the desired result, sensors are also used to ensure
worker’s safety.

The direct interface with the physical environment comes with many chal-
lenges. Most importantly, the control loop needs to operate under real-time
conditions. External and environmental changes should have a timely reaction, e.g.
a sudden gust of wind should cause immediate countermeasures even if the CPS
is currently performing some other task. This means that the control loop should
have a very predictable timing behavior and needs to be executed at a sufficiently

3

high frequency such that external environmental factors cannot destabilize the
system.

Furthermore, sensors usually introduce some noise and lose some precision
when converting the analog readings to digital values consumed by the control
logic. This needs to be taken into account when computing the current state which
for those reasons will always be slightly inaccurate.

At the same time CPS often operate disconnected from the power grid on
battery or solar power. Therefore, power consumption is another limiting factor
that needs to be taken into account.

Those constraints increase the difficulty of developing CPS and introduce
some unique challenges. Many CPS use real-time operating systems making it
easier to ensure that the frequency constraints are met. Filters are used when
handling noisy sensor readings in order to reduce its impact on the internal state.
Power models help estimating the available power resources and whether they are
sufficient to accomplish the current mission.

In general, high predictability of both the software and the hardware is desir-
able for CPS and other embedded systems that will be deployed in safety-critical
environments. To provide formal guarantees on the execution time, worst-case
execution time (WCET) analysis can be used to provide an upper bound on the
execution time. In less critical scenarios, the WCET may be estimated by adding
a constant factor to the highest observed execution time (HOET) which works
in many cases in practice but fails to provide any guarantees[2]. However, to
provide guarantees, a pessimistic over-approximation of the actual runtime is used,
which means that the actual HOET observed in practice might be a lot lower.
Especially microarchitectural optimizations like caches and pipelines which cannot
be influenced at the software level make the execution time hard to predict[3].
Specially designed hardware can make use of predictable pipelines and provide
software-controlled scratchpad memories which in reality might be slower than
other alternatives but provide better guarantees in the worst case.

In the development of CPS over-approximations due to WCET analysis might
lead to hardware upgrades which would not have been necessary thus possibly
increasing the cost of the entire system. Improving the analysis or being able
to show that a lower WCET for specific safety-critical scenarios applies (e.g. con-
trolled shutdown in case of emergencies) might allow to settle on less capable and

4

possibly cheaper hardware that is guaranteed to be able to handle certain safety-
critical scenarios but fails to provide guarantees in the general case.

2.1.1 CPS Control Platforms
Due to the large variety of CPS, there is also a large variety of CPS controllers and
control platforms. While some CPS have very specialized software designed for
their specific purpose, there are also some well-known platforms that can target
different hardware configurations and different use-cases. For robotics, there is
the Robot Operating System (ROS) [4] which is broadly used in robots in both
research and industry. The Open Robot Control Software (Orocos) [5] project
provides a toolchain to develop robots with real-time components and comes with
a library of several components that can be integrated directly into this toolchain.
For Unmanned Aerial Vehicle (UAV), the two most well-known flight-controllers
are PX4[6] and ArduPilot[7]. Both of them are widely used in research and
industry including being deployed on commercially available UAV [8, 9]. Both of
them use the MavLink protocol [10] to communicate with the ground station and
receive mission commands. This protocol defines a lightweight message format for
communication between the ground control station and the UAV.

ArduPilot is a platform that can be deployed on unmanned copters, planes,
rovers and boats. Its architecture allows to easily integrate different hardware
components, schedule periodic tasks to communicate with the hardware and
influence the system’s internal state. Hardware Abstraction Layers (HALs) are
provided for various platforms, including the ESP32, ChibiOS and Linux. The
custom firmware builder [11] currently supports 241 different boards for the copter
variant only.

2.2 Full-System Simulation
Simulation is nowadays an important aspect of the testing process in software
development and systems design since it provides a reproducible and reliable way
to evaluate the performance of a given system.

However, not every simulation has the same requirements. In some cases, only
the resulting data might be important, while in other cases the runtime matters
and in some other cases one might even care about the power consumption during
the computation. To accommodate these different necessities, many different,
specialized simulators have been developed over time. For example OMNet++[12]

5

is framework to build domain-specific simulators for network simulations and
CARLA[13] is a simulator tailored for research towards autonomous vehicles

While these simulators are very well suited to test individual pieces of software
or very specific scenarios, in many cases the interesting results come from the
interaction of multiple components, e.g. two hosts that communicate over the net-
work. Simulating all relevant components of a complex system is called full-system
simulation. One approach to do this kind of simulation is to develop a specialized
simulator that incorporates the whole system into one large simulation. However,
this approach requires significant manual effort and provides no flexibility when it
comes to small changes to the topology of the system. Another approach is to take
existing simulators for off-the-shelf components and interconnect them to recreate
the simulated topology.

The latter approach provides more flexibility regarding the simulated topology
and makes it easier to integrate a new simulator for a specific component.
However, the heterogeneity of simulators and their interfaces creates challenges
regarding inter-simulation communication and synchronization to ensure that
external events are received at the same time they would be received in the
real system. Without synchronization every component would be executed with
a variable slowdown causing simulators to drift away from each other in terms of
simulated time.

2.2.1 Full-System Simulation in SimBricks
SimBricks [14] is a framework for full-system simulation that overcomes the afore-
mentioned challenges by interconnecting different simulators at natural boundaries
using standardized interfaces and by coordinating the progress of simulated time
using synchronization messages.

SimBricks provides support for several commonly-used simulators such as
gem5 [15, 16, 17] and QEMU [18] for host simulation, ns-3 [19] for network
simulation as well as Verilator [20] to simulate custom hardware designs. The
simulators are connected using SimBricks adapters that implement one of the
available interfaces. These interfaces aim to separate the simulators at natural
boundaries. By default, there are interfaces implementing PCIe (to connect hosts
with NICs or accelerators), Ethernet (to connect the NICs to the network simu-
lator) and a memory interface (to connect hosts with different kinds of memory
devices, e.g. networked memory).

6

PCIe

Ethernet Ethernet

PCIe Memory

EMU

Figure 1: Simulator configuration for a SimBricks simulation involving two hosts connected
over the network.

During the simulation, every component is simulated in a different process.
Communication is handled through shared memory queues allowing for efficient
communication. A configurable parameter sync_interval ensures that each sim-
ulator is at most sync_interval ahead or behind any other directly connected
simulator, ensuring that all simulators progress at roughly the same speed.

A simulation in SimBricks is configured using a Python script describing the
necessary components and wiring the interfaces up. The orchestration framework
then takes care of instantiating the simulators and configuring the shared-memory
queues for communication. Figure 1 shows the setup of a small SimBricks exper-
iment consisting of two hosts, one simulated using QEMU and one using gem5.
Both feature a NIC that connects them to the simulated network. The gem5 host
additionally has a dedicated memory device simulated in another process. Such a
setup can be used to simulate a client-server application where the server needs to
access memory to fullfil the incoming requests. Tuning the simulations parameters
allows to e.g. measure the impact of the memory latency on the latency that the
client perceives or limiting the client’s bandwidth allows simulating poor network
conditions.

To simulate this setup in SimBricks, the setup needs to be specified using the
provided orchestration framework as shown in Listing 1. Each required simulator
is instantiated and configured with a few important parameters like the IP address
or the size of the simulated memory. Then connections between simulators are
defined and lastly the experiment is added to the queue. SimBricks provides
a script that takes this specification, configures the simulators accordingly and
executes the simulation.

7

1 from simbricks.orchestration.experiments import Experiment
2 from simbricks.orchestration.nodeconfig import I40eLinuxNode
3 from simbricks.orchestration.simulators import Gem5Host, QemuHost, I40eNIC, SwitchNet, BasicMemDev
4 from nodeconfig import ServerApp, ClientApp
5
6 e = Experiment(name='demo')
7
8 # create server
9 server_config = I40eLinuxNode()

10 server_config.ip = '10.0.0.1'
11 server_config.app = ServerApp()
12 server = Gem5Host(server_config)
13 server.name = 'server'
14 e.add_host(server)
15
16 # attach the server's memory
17 server_mem = BasicMemDev()
18 server_mem.name = 'server_mem'
19 server_mem.addr = 0x2000000000
20 server_mem.size = 512 * 1024 * 1024
21 server.add_memdev(server_mem)
22
23 # attach server's NIC
24 server_nic = I40eNIC()
25 e.add_nic(server_nic)
26 server.add_nic(server_nic)
27
28 # create client
29 client_config = I40eLinuxNode()
30 client_config.app = ClientApp()
31 client_config.server_ips = ['10.0.0.1']
32 client = QemuHost(client_config)
33 client.name = 'client'
34 client.wait = True
35 e.add_host(client)
36
37 # attach client's NIC
38 client_nic = I40eNIC()
39 e.add_nic(client_nic)
40 client.add_nic(client_nic)
41
42 # connect NICs over network
43 network = SwitchNet()
44 e.add_network(network)
45 server_nic.set_network(network)
46 client_nic.set_network(network)
47
48 experiments = [e]

Listing 1: Configuration script for the SimBricks simulation shown in Figure 1

2.3 Physics Simulation
For a full-system simulation of a CPS, simulating the digital components of the
system is not sufficient. To capture all interactions with the environment, a physics
simulator is needed to model the dynamics of the environment.

Simulating this environment accurately however is not straightforward. While
digital components can be modeled as a sequence of discrete events (e.g. a sequence

8

of instructions being executed on a CPU or a sequence of function calls), the
physical environment is continuous in both space and time. Modeling this can
be done using differential equations that allow calculating the state of the envi-
ronment over time. To integrate this continuous model with a discrete controller,
there are two orthogonal options.

On the one hand, one can capture the control logic in mathematic equations
that compute the CPS’s control outputs for a certain state of the environment.
This approach integrates well with the differential equations from the environ-
mental model. This set of equations can be used to precisely compute the behavior
of the CPS in the continuous space and over some period of time. The drawback
of this approach is that one needs an exact model of the control logic in the form
of mathematical equations which is usually hard to obtain. Complex controllers
might require thousands of lines of code that cannot easily be transformed into
mathematical equations and the timing of those computations will depend on
the specific hardware. To simplify the mathematical representation of the control
logic, several approximation methods can be applied, e.g. worst-case execution
time (WCET) analysis that allows to put an upper bound on the execution time
of certain code sequences. While this allows to prove that certain hardware is
capable enough for a certain task, the over-approximation might lead to costly
and unnecessary upgrades of the deployed hardware. Matlab/Simulink[21, 22] is a
popular choice for such a simulation. This tool allows to model both the physical
environment and the control logic mathematically at various levels of detail and
allows to create user interfaces to interact with the simulation.

On the other hand, the physics simulation can be set up to interact with the
control logic in an event based fashion. In this case, the physics simulator proceeds
in fixed time intervals during which the control inputs are assumed to be stable.
This allows to then compute the differential equations on how the state will evolve
during the next interval. Afterwards, the control inputs are sampled again before
executing the next step. While this does not model the dynamics as precisely as
the first approach, it does not require any model of the control logic. Instead, the
actual controller can be used to compute the control inputs in every sampling step.

Independently of the choice of the simulator, a physical simulation consists
of two important parts. Most importantly, there is the simulation of the physical
dynamics. This simulation considers all simulated entities, their mass and their
shape as well as movable joints, friction and collisions of multiple objects to

9

compute forces, velocities and relative positions of those objects at some point
during the simulation. Such a simulation is not only needed in research and
development but can also be found in modern games where a 3D model is used
to represent the current state of the game which is subject to physical dynamics
although instead of focussing on a high precision, rendering movements such that
the user perceives them as natural is more important in this case.

Apart from that, one needs to be able to specify the configuration of the
environment and all entities. Ideally, certain commonly-used components are
predefined such that the user does not need to specify the respective attributes
individually. The specification can also include virtual sensors that are placed on
certain objects that can be read and fed back into the simulation of the control
loop.

Gazebo[23] is a collection of simulation-related libraries forming an ecosystem
for a large range of physical simulations using a step-based approach. It uses the
ODE[24] backend to compute the dynamic behavior of the simulated entities. The
SDF[25] format is used to specify the simulated world as well as all entities present
within the environment. The description of the world consists of parameters that
affect the entire simulation, e.g. simulation granularity, gravity and weather condi-
tions. These properties alow worlds to mimic the earth’s surface as well as water,
airspace or even other planets. Inside these worlds, any number of models can be
placed describing independent entities present in the world. Models are described
by their form factor, mass and aerodynamics and can be composed of multiple
joints and links that connect different parts of the model. Dynamic behavior as
well as virtual sensors are integrated using plugins which can also be imported
directly in the SDF description. Each plugin provides hooks to be called before and
after the world’s state gets updated. Inside these hooks, it is possible to change
the state of the simulation, e.g. by applying a force on a joint emulating a motor.
Communication between plugins is achieved using a message passing system with
topics. Those messages can contain information about the state of the simulation,
e.g. the current simulation time is published as gz::msgs::Clock under /clock, the
state of specific components, e.g. an IMU sensor publishes its readings periodically
as gz::msgs::IMU or provide commands to specific components, e.g. to control the
force applied to a joint. Each plugin can advertise topics and publish messages for
each advertised topic. On the other end, it can also subscribe to any advertised
topic and receive a callback once a message is published.

10

1 <sdf version="1.8">
2 <world name="simple_world">
3 <!-- max_step_size ensures that plugins are called every 100us -->
4 <physics name="100us" type="ignore">
5 <max_step_size>0.0001</max_step_size>
6 </physics>
7 <!-- Import GPS plugin -->
8 <plugin filename="gz-sim-navsat-system" name="gz::sim::systems::Navsat" />
9 <!-- Add models -->

10 <model name="object_with_gnss_sensor">
11 <!-- Define position in the world -->
12 <pose degrees="true">0 0 1 0 0 90</pose>
13 <link name='base_link'>
14 <!-- Optionally define mass, center of gravity etc. -->
15 <inertial>
16 <mass>1.5</mass>
17 </inertial>
18 <!-- Define shape, size friction -->
19 <collision name='base_collision'>
20 <geometry>
21 <box>
22 <size>0.47 0.47 0.23</size>
23 </box>
24 </geometry>
25 <surface>
26 <friction>
27 <ode>
28 <mu>100000.0</mu>
29 <mu2>100000.0</mu2>
30 </ode>
31 </friction>
32 </surface>
33 </collision>
34 <!-- Add a GNSS sensor that updates every 100 cycles -->
35 <sensor name="navsat_sensor" type="navsat">
36 <always_on>1</always_on>
37 <update_rate>100</update_rate>
38 </sensor>
39 </link>
40 </world>
41 </sdf>

Listing 2: The definition of a world in the SDF format. It includes only one object of a
certain size that is equipped with a Global Navigation Satellite System (GNSS) sensor.

Listing 2 shows a small sample of how a simple world is defined in Gazebo.
A model has three different types of components. Links (lines 13-39) represent
static components. Additionally, there can be joints which represent a connection
between links and define how two links can move relative to each other. Collisions
(lines 19-33) on the other hand define the shape of a link and are used to calculate
collisions between models. Line 8 and lines 35-38 show how a sensor can be loaded
using a plugin.

11

3 Motivation

The first chapter highlighted that CPS often have high requirements towards
reliability and functional correctness. Additionally, those system might appear in
settings where testing on the physical hardware is expensive or infeasible. Software-
based simulation can be an alternative to this since it eliminates the requirement
to build the hardware beforehand and potential failures cannot result in damaged
or destroyed hardware that needs replacement.

Various different simulation approaches already exist modeling the system at
different levels of detail. Each of these simulators has its advantages and downsides.
The ArduPilot SITL simulator for example works great to test the interaction with
the ground control station, i.e. receiving mission commands, changing the flight
mode or completing a fixed mission. The approach proposed in [26] using Matlab/
Simulink uses a mathematical model of the flight controller and the aerodynamics
which might outperform other simulators in precision given a precise mathematical
representation while some aspects of the UAV like computational latencies are not
part of the abstraction and thus cannot be tested in such a simulation.

While those simulators help avoiding costly errors while building CPS, many
errors cannot be detected when different components are tested in isolation.
Additionally, some errors only appear with certain hardware configurations or
when specific environmental factors match.

A study[27] analyzed commits in the ArduPilot repository identifying commits
likely corresponding to bug fixes. Those code changes were then manually analyzed
to identify under which circumstances this bug could have been observed. The
authors concluded that a large number of bugs are not detectable using traditional
testing methods or simulation using ArduPilot’s built-in SITL simulator. This
simulator bypasses most of the platform-specific code by providing its own HAL for
the simulation. Errors in code for specific hardware configurations, e.g. drivers for
different IMU sensors thus cannot be detected in the simulation as these modules
are not part of the simulation. Other bugs require certain hardware limitations
such as a low memory capacity. The lack of simulators capable of detecting this
kind of bugs may turn out to be very costly, especially if the bugs cause the
hardware to be destroyed e.g. in a crash.

Therefore, in order to build reliable CPS, simulation at a higher fidelity
considering all components of the system is crucial. Simulation not only allows

13

testing regular operations but the ability to configure environmental factors helps
to recreate rare conditions that in reality might not occur very often and are thus
difficult to test in reality during development.

Furthermore, simulating under realistic conditions allows to choose appro-
priate hardware by testing how different components can handle the required
workload. This allows to dimension CPU and memory accordingly and testing
different sensor models (according to their specification from the respective
datasheet) might allow to settle on more affordable hardware that is still capable
of providing the required functionality.

Another limitation of many existing simulators is the missing interoperability.
First of all, since most simulators do not implement a standardized interface, inter-
connecting different simulators might be challenging. Apart from that, existing
simulators cannot easily be combined due to their lack of synchronization. For
example, the ArduPilot SITL simulator needs a ground station to receive mission
control commands. Without synchronization, the ground station operates at real
time while the SITL simulator has its own simulated time that may face a variable
slowdown due to the limited hardware capabilities. A simulation in which e.g.
the drone receives a command to land exactly 10 seconds after reaching a certain
altitude is therefore infeasible since (without any further modifications) the ground
station has no way of determining how much simulated time has passed.

This project enables full-system simulation for CPS by integrating Gazebo into
the SimBricks framework. This integration happens transparently to the control
software running in a separate simulator which thus does not need to enable special
drivers for simulated environments but accesses the hardware as it would do in
a real scenario. The simulation takes care of emulating the sensors using data
provided from Gazebo. The synchronization mechanisms provided by SimBricks
enable precise modeling of the interactions between various components. Every
simulated CPS shares the same environment in Gazebo allowing to capture inter-
actions between the devices, e.g. collisions.

To show the feasibility of this approach, ArduPilot is integrated and evaluated
(Chapter 6). However, the flexibility of the simulators and the interfaces does
not restrict this approach to UAV but this framework can also be used to e.g.
simulate spacecraft, to evaluate automated factory designs or to build vehicle-to-
infrastructure or vehicle-to-vehicle communication.

14

4 Design

The previous chapter outlined the importance of full-system simulation for the
development of reliable CPS. This chapter focusses on how the existing SimBricks
framework can be extended to support simulating CPS. After evaluating the
requirements for those simulations in Section 4.1, a new interface for SimBricks
is proposed in Section 4.2. Finally, the limitations of the proposed design are
discussed in Section 4.3.

4.1 Requirements
In its current state, SimBricks focusses on components that are physically con-
nected and implements the interfaces that those devices usually provide, splitting
the simulation at natural boundaries. However, there is currently no interface
to integrate a physics simulator which would be needed to fully support CPS.
This is the environment where the simulated objects are placed, but since the
physical environment is not directly “connected” to the digital components, there
is not a single, well-defined connection which a SimBricks interface could mimic.
Nevertheless, CPS mainly interact with their environment through specialized
sensors and actuators that provide information about a certain property of the
environment or affect certain properties of the environment. Thus, it makes sense
to place the physical interface at the level of the sensors and actuators.

In line with the existing interfaces in SimBricks, this physical interface should
be fully simulator-agnostic, i.e. it should be possible to switch the simulators
without any modifications to the interface itself. Furthermore, the interface should
not be specialized to a specific use case but rather be flexible in terms of sensor
and actuator types that are supported.

Another important aspect is the ability to support multiple devices in the
same physical environment that act independently but may influence each other’s
sensor reading (e.g. imagine a LIDAR sensor that should detect objects nearby).
All of those devices in the physical simulation should be accessible through the
physical interface. In case that there are multiple identical devices, there should
be some way of addressing a specific device and a specific sensor or actuator.

15

CPS Physical Simulation

CPS Physical Simulation

SimBricks Initialization

host_intro(expected_sensor_count, expected_actuator_count)

physical_intro(available_sensor_count, available_actuator_count)

Sensor Configuration

sensor_capabilities(id, type, factor, push_avail., max_frequency)

sensor_configuration(id, push_req. = false)

loop [For each sensor]

actuator_capabilities(id, type, min, max)

loop [For each actuator]

Normal Operation

sensor_request(id)

sensor_read(id, type, values)

actuator_write(id, values)

Figure 2: Messages sent during setup and normal operation of the physical interface with
polling.

4.2 An Interface for Physical Simulators
All interfaces in SimBricks extend the Base interface. This already defines how
a connection is established and how messages are kept in order. To extend the
interface, one needs to define a protocol, i.e. which types of messages should be
available and what the content of these messages should be.

For the physical interface, one important design choice is whether the sensor-
side should poll for new data or if the simulator should push new sensor readings
at certain intervals. Polling has some advantages when certain sensors allow to
dynamically configure their update rate. In this case, one only needs to modify the
rate of polling. However, polling might lead to more congestion on the interface

16

CPS Physical Simulation

CPS Physical Simulation

SimBricks Initialization

host_intro(expected_sensor_count, expected_actuator_count)

physical_intro(available_sensor_count, available_actuator_count)

Sensor Configuration

sensor_capabilities(id, type, factor, push_avail., max_frequency)

sensor_configuration(id, push_req. = true, push_frequency)

loop [For each sensor]

actuator_capabilities(id, type, min, max)

loop [For each actuator]

Normal Operation

sensor_read(id, type, values)

loop [At the specified rate]

actuator_write(id, values)

Figure 3: Messages sent during setup and normal operation of the physical interface with
pushing

since for every new sensor read two messages need to be exchanged (the request
and the response) while with pushing there is no need for those requests. Thus,
it depends on the application which approach fits better. The physical interface
therefore supports both pushing and polling, configurable during the initial
handshake.

Figure 2 shows which messages are exchanged between the CPS and the
physical simulation. First, both parties agree on the number of available sensors
and actuators. The physical simulation then presents the sensors and actuators
and their capabilities, e.g. their type and their value ranges. For sensors, the CPS
now configures that the sensors are queried using polling, for actuators no further

17

configuration is required. During the normal operation, the CPS periodically (or
as needed) sends a sensor read request and gets a response with the current sensor
readings. For actuators, the CPS sends a write message every time the control
values for this actuator need to be updated.

When using pushing for sensor readings, the initial phase is similar as shown
in Figure 3. The only difference is that the CPS requests pushing when configuring
a sensor. Additionally, it sets the push frequency, i.e. the frequency at which it
expects sensor updates. After the initialization, the physical simulation now sends
out the sensor readings at the requested rate without a separate read request.

4.3 Limitations
The proposed design allows to use SimBricks to connect a physical simulator to
the already supported simulators. While this setup allows to simulate most aspects
of CPS, there are still some limitations to consider.

First of all, there is no human in the loop. Thus devices that require manual
inputs, e.g. joystick operated robots are hard to simulate in this way. While in
theory it is possible to record and replay those inputs during the simulation, timing
those inputs correctly may result difficult. Slight variations may already cause a
different behavior which would require varying the input which is impossible to
achieve with a static input. These applications are considered out-of-scope for this
project and are left for future work. A possible solution to this would model the
manual inputs depending on the current state, e.g. when moving towards a goal
the inputs are chosen in such a way that the robot moves towards the goal.

The issue of slight variations may also arise when the emulated sensors are not
modeled perfectly, e.g. depending on the sensor the datasheet might not specify at
which precision certain computations are performed internally and slight rounding
errors might propagate and lead to small variations in the emulated sensor
readings. If necessary, validation of the emulator could be achieved by comparing
the sensor readings from a physical sensor in a very controlled environment with
the emulated readings. A recent article [28] proposes a methodology to validate
sensor models using strategic experimental validation to perform a statistical
validation. However, even with this, sensor signals are always affected by noise
which is usually assumed to be additive gaussian noise. While it is possible to add
noise in the simulation, in reality the signals will always be slightly different.

18

Furthermore, SimBricks allows to exchange messages of a fixed size. Thus,
transmitting large amounts of data, e.g. a high resolution camera stream would
come with a significant overhead and would likely slow down the simulation even
more. To support transmitting large amounts of data, adding a secondary (possibly
unidirectional) communication channel outside the SimBricks environment might
yield the best performance.

The design from the previous section also considers sensors and actuators as
the only point of interaction of the CPS with its environment. Generally speaking,
many other interactions are possible that are not covered in this abstraction. For
example the temperature of the environment could influence the clock frequency of
the controller. In theory even rain could enter into some connectors creating short
circuits or external radiation could cause corruptions of the internal state. Those
influences are considered out of scope and would require modeling and simulating
the system at a much higher fidelity.

Finally, as always for simulation, the simulation does not provide any guaran-
tees about the correctness of the control logic or any other simulated component.
Applications requiring a high reliability thus still need to be verified using formal
proofs to avoid unwanted behavior in the field. However, simulations can help to
justify certain assumptions that are required for the formal verification, e.g. by
ensuring that certain specific scenarios work as expected.

19

5 Implementation

This chapter provides some details on how the design presented in the previous
chapter has been implemented.

5.1 Protocol
The SimBricks Base interface already provides useful functionality shared between
all interfaces. By extending this interface, the existing synchronization infrastruc-
ture as well as message allocation, ordering and destruction is already provided.
Thus, what remains to do is to define the available message types and its
contents as well as implementing the correct handlers on both sides. However,
to simplify message handling, SimBricks requires all messages to have the same
size of 64 bytes and certain fields to remain in specific positions. This results in
a slightly less flexible structure for the messages. For compatibility reasons, all
the values sent over this interface are stored as int32_t. Values that have a small
range but require a higher precision (i.e. floating point values) are multiplied with
a negotiated conversion factor and then converted from floating point to integer.
On the receiving side, the original value is restored using the conversion factor.

5.1.1 The intro messages
Listing 3 shows the definition of the intro messages sent by the physical simulator
(Listing 3a) and the host (Listing 3b). Both contain the device_id to ensure
the communication channel is set up correctly by ensuring both parties agree on
the device. Furthermore, the available_sensor_count/available_actuator_count
combined with the expected_senor_count/expected_actuator_count provide a
first sanity check to see if the devices match. Which sensor and actuator types are
actually available and used is negotiated in the next phase.

1 struct SimbricksProtoPhysicalPhysicalIntro {
2 uint32_t device_id;
3 uint32_t available_sensor_count;
4 uint32_t available_actuator_count;
5 } __attribute__((packed));

(a) Intro message sent by physical simulator to
host.

1 struct SimbricksProtoPhysicalHostIntro {
2 uint32_t device_id;
3 uint32_t expected_sensor_count;
4 uint32_t expected_actuator_count;
5 } __attribute__((packed))

(b) Intro message sent by host to physical simu-
lator.

Listing 3: The intro messages sent via the physical interface upon
initializing the connection.

21

1 struct SimbricksProtoPhysicalP2HSensorCapabilities {
2 uint64_t req_id;
3 uint32_t device_id;
4 uint32_t sensor_type;
5 uint32_t sensor_id;
6 uint32_t conversion_factor;
7 uint32_t max_frequency;
8 bool push_available;
9 uint8_t pad[19];
10 uint64_t timestamp;
11 uint8_t pad_[7];
12 uint8_t own_type;
13 } __attribute__((packed));

(a) Sensor capabilities message providing the
sensor type and whether push functionality is

available.

1 struct SimbricksProtoPhysicalP2HActuatorCapabilities {
2 uint64_t req_id;
3 uint32_t device_id;
4 uint32_t actuator_type;
5 uint32_t actuator_id;
6 int32_t min_value;
7 int32_t max_value;
8 uint8_t pad[20];
9 uint64_t timestamp;
10 uint8_t pad_[7];
11 uint8_t own_type;
12 } __attribute__((packed));

(b) Actuator capabilities message providing the
actuator type and the range of accepted values

(min_value and max_value).
1 struct SimbricksProtoPhysicalH2PSensorConfiguration {
2 uint64_t req_id;
3 uint32_t device_id;
4 uint32_t sensor_type;
5 uint32_t sensor_id;
6 bool push_enabled;
7 uint8_t pad[3];
8 uint32_t frequency;
9 uint8_t pad_[20];
10 uint64_t timestamp;
11 uint8_t pad__[7];
12 uint8_t own_type;
13 } __attribute__((packed));

(c) Response sent by the host to configure pushing.
Listing 4: The configuration messages used to introduce the available sensors and actuators

and to configure how sensor signals should be transmitted.

5.1.2 The Configuration Phase
During the second phase, the physical simulator sends details about the sensors
using the format specified in Listing 4a and about the actuators (Listing 4b) it is
simulating and the host has the possibility to enable pushing of sensor signals as
well as configuring the frequency using its response (Listing 4c). The conversion
factor specifies the multiplier that is used to convert the actual metric into an
int32_t for transmission. As the number of sensors and actuators has already been
negotiated in the initial phase, the number of messages sent during the second
phase is fixed and thus allows for an easy implementation on both sides, especially
if the received values are just used to verify the configuration.

5.1.3 Exchanging Values
Once the initial configuration is over and the simulation is running, updated
sensor readings and actuator outputs need to be transferred between the physical
simulation and the host. Depending on whether pushing was configured or not,
the host now has to request certain values (Listing 5a) and the physical simulation

22

1 struct SimbricksProtoPhysicalH2PSensorReadRequest {
2 uint64_t req_id;
3 uint32_t device_id;
4 uint32_t sensor_type;
5 uint32_t sensor_id;
6 uint8_t pad[28];
7 uint64_t timestamp;
8 uint8_t pad_[7];
9 uint8_t own_type;
10 } __attribute__((packed));

(a) Request to send the latest readings of a specific sensor.
1 struct SimbricksProtoPhysicalP2HSensorRead {
2 uint64_t req_id;
3 uint32_t device_id;
4 uint32_t sensor_type;
5 uint32_t sensor_id;
6 int32_t val_1;
7 int32_t val_2;
8 int32_t val_3;
9 int32_t val_4;
10 int32_t val_5;
11 int32_t val_6;
12 int32_t val_7;
13 uint64_t timestamp;
14 int32_t val_8;
15 uint8_t pad_[3];
16 uint8_t own_type;
17 } __attribute__((packed));

(b) Latest sensor readings of the specified sensor.

1 struct SimbricksProtoPhysicalH2PActuatorWrite {
2 uint64_t req_id;
3 uint32_t device_id;
4 uint32_t actuator_type;
5 uint32_t actuator_id;
6 int32_t val_1;
7 int32_t val_2;
8 int32_t val_3;
9 int32_t val_4;
10 int32_t val_5;
11 int32_t val_6;
12 int32_t val_7;
13 uint64_t timestamp;
14 int32_t val_8;
15 uint8_t pad_[3];
16 uint8_t own_type;
17 } __attribute__((packed));

(c) Request to set the actuator.
Listing 5: The messages used to exchange data on the physical interface. The generic val_1 -

val_8 may hold different values depending on the specific sensor or actuator type.

then responds with the current readings or the simulation will just provide updated
values at certain intervals (Listing 5b). For the actuators a different message is
sent to update the current outputs (Listing 5c). While no message is sent, the
outputs are assumed to remain unchanged.

As explained above, all values are converted to int32_t and due to the
restricted size of SimBricks messages, up to 32 bytes (i.e. eight 32 bit values)
of data can be transferred in one message. Having just one message type for all
readings and one message type for any write allows to flexibly add support for
different metrics without changing SimBricks core library. By default, the interface
defines 9 different metrics and the corresponding units in which values should be
exchanged. An overview can be found in Table 1.

5.2 Gazebo Integration
Gazebo provides a flexible interface for plugins to interact with the simulation.
This even allows stalling the simulation for an extended period of time, e.g. until
the host has caught up. To add a plugin to a simulation it is as easy as adding the
plugin to the sdf of the currently simulated world (as shown in Listing 1, Line 8).

23

Metric ID Response Unit Default Factor

Altitude 0x01 altitude 𝑚 102

Temperature 0x02 temperature 𝐾 106

Position 0x03 [
latitude
longitude
altitude

] [
°
°
𝑚
] 106

Ground Velocity 0x04 velocity 𝑚
𝑠 103

Heading 0x05 heading ° 103

Orientation 0x06

[
[
[
w
x
y
z]
]
]

ℍ¹ 106

Angular Velocity 0x07 [
x
y
z
]

[
[[

rad
𝑠
rad
𝑠
rad
𝑠]
]] 106

Acceleration 0x08 [
x
y
z
]

[
[[

𝑚
𝑠2
𝑚
𝑠2
𝑚
𝑠2]
]] 106

Magnetic Field 0x09 [
x
y
z
] [

𝑇
𝑇
𝑇
] 109

Table 1: Predefined metrics for the physical interface with their respective `ID`, unit and
the default conversion factor.

Optional arguments are passed to the plugin, allowing to configure the plugin
directly from the sdf file.

Plugins can act at different levels, e.g. some may be specific to one simulated
entity while others affect the whole simulation. To integrate SimBricks, a plugin
at the system level is required. These plugins need to implement three methods:
• Configure is called once during the setup of the simulation and allows to make

changes to the model before starting the simulation.
• PreUpdate is called at some point before the simulation advances to the next

interval allowing to adjust actuators in time for the next computation.
• PostUpdate is called after performing a simulation step.
Furthermore, Gazebo uses a publisher-subscriber system to communicate. New
sensor readings are published under a certain topic and actuators can be configured
by publishing messages on their respective topics. Thus, during the Configure

¹ℍ stands for a rotation quaternion which represents a rotation using a four-dimensional vector
normalized to a length of 1[29].

24

Up

North

East
x

y

z

x
y

z

Figure 4: Gazebo’s ENU coordinate system vs. ArduPilot’s NED system .

phase, the SimBricks plugin subscribes to all relevant sensors and then receives
a callback once the sensor values update. Similarly, in order to apply actuator
writings, the plugin will publish a message under the respective topics containing
the new control value, e.g. the force to be applied to a joint).

There is one caveat when working with Gazebo and ArduPilot. Gazebo uses
the East-North-Up (ENU) coordinate system where 𝑥 points east and 𝑧 upwards
(red in Figure 4) and ArduPilot uses the North-East-Down (NED) coordinate
system (blue in Figure 4). The rotational direction is - as per convention -
according to the right hand rule, i.e. a rotation is positive when rotating from
east to north around an axis facing upwards. In the current implementation, those
conversions are done before sending the values over the physical interface, thus all
transmitted values are in the NED coordinate system.

5.3 gem5 Integration
To simulate the control logic, the gem5 simulator provides a detailed simulation
environment for various CPU types and is already supported in the SimBricks
environment. It serves as one of the standard choices to simulate applications in a
Linux environment. ArduPilot provides various HAL, one of which supports Linux
hosts. Thus, executing ArduPilot inside gem5 running the provided Linux image
does not require any modifications to existing SimBricks simulators. However,
depending on the configuration, various external devices (sensors and actuators)
need to be available to successfully start ArduPilot.

Typically, sensors and actuators are connected via serial interfaces such
as Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I²C) or Universal
Asynchronous Receiver Transmitter (UART). Linux provides access to those

25

1 class Device
2 {
3 public:
4 virtual ~Device() {}
5
6 virtual uint32_t getDeviceID() = 0;
7 virtual size_t getBase() = 0;
8 virtual size_t getMMIOSize() = 0;
9
10 virtual void processSensorReading(volatile struct SimbricksProtoPhysicalP2HSensorRead *msg) = 0;
11 virtual size_t processMemoryReadRequest(size_t offset, size_t size, void** data) = 0;
12 virtual size_t processMemoryWriteRequest(size_t offset, size_t size, volatile void* data) = 0;
13
14 virtual std::pair<uint64_t, std::list<uint8_t>> nextDeviceReadRequestTime() = 0;
15 virtual void deviceReadRequested(uint64_t timestamp) = 0;
16
17 virtual bool hasActuatorWriteMessage(uint64_t timestamp) = 0;
18 virtual bool getActuatorWriteMessage(
19 uint64_t timestamp,
20 volatile SimbricksProtoPhysicalH2PActuatorWrite* msg
21) = 0;
22
23 virtual bool restoreCheckpoint() = 0;
24 };
25

Listing 6: The interface implemented by the emulators of sensors and actuators.

devices via the device tree, i.e. serial devices are available as e.g. /dev/serial0 or
/dev/spidev0.0. Those are special files that support the ioctl system call that
allows to send or receive data from a serial device.

For this project, those devices are registered using a custom kernel module
that provides implementations of the necessary system calls and redirects them via
the SimBricks memory interface to an emulator for those devices. While gem5 does
provide support for programmed I/O devices directly, due to a conflicting address
range of the gem5 configuration and ArduPilot’s configuration, this approach
turned out to work better in this case.

The emulator receives the requests from the host and simultaneously connects
to Gazebo to keep the sensor readings updated. From those readings, the appro-
priate control register values are computed and provided to the host upon request.

The emulator currently supports the following sensors:
• The MS5611 digital pressure and altimeter sensor[30]
• The MPU-9250 IMU sensor[31]
• The AK-8963 magnetometer (integrated with the MPU-9250)[32]
• A generic NMEA GNSS sensor[33]
As actuator the emulator supports any PWM controlled device.

26

While those sensors are not enough to simulate any CPS, given a
detailed datasheet describing the interface and the value’s encodings, inte-
grating more sensors is straightforward. The emulator provides an interface
for Devices (Listing 6) to implement that allows to react to inputs
from either the host (processMemoryReadRequest, processMemoryWriteRequest)
or the physical (processSensorReading) side, to request sensor readings
(nextDeviceReadRequestTime) and to send messages to the physical simulation
(getActuatorWriteMessage). The sensor’s implementation then only needs to keep
track of the internal state of the sensor. The complexity of this state largely
depends on the specific sensor.

For example, for the MS5611 the temperature and pressure are calculated
using six calibration values (𝐶1 - 𝐶6) provided by the factory. As shown in [30,
Figure 2], the temperature 𝑡 is calculated using this formula:

𝑡 = 2000 + (𝐷2 −𝐶5 ∗ 28) ∗
𝐶6
223

where 𝐷2 is one of the two values read from the sensor. To emulate the sensor, 𝐷2
needs to be calculated for a given temperature, i.e.

𝐷2 = ((𝑡 − 2000) ∗ 2
23

𝐶6
)+𝐶5 ∗ 28

The emulator uses the calibration values provided as example in the datasheet.

27

6 Evaluation

To evaluate the approach presented in the previous chapters, multiple experiments
have been conducted. The setup of those experiments is described in Section 6.1.
Using this setup, the following research questions have been analyzed:
RQ1: Can SimBricks be used to evaluate different hardware configurations of a

CPS? (Section 6.2)
RQ2: Is this approach able to detect bugs that are out-of-scope for existing

simulators? (Section 6.3)
RQ3: How does this approach scale to multiple simulated CPS? (Section 6.4)
RQ4: How does the slowdown compare to the existing ArduPilot SITL simulator?

(Section 6.4)
RQ5: What is the required effort to set up a simulation for a specific CPS?

(Section 6.5)

6.1 Setup
An overview of the setup used in the following evaluation can be found in Figure 5.
ArduPilot is running on a gem5 host with the default Linux configuration provided
by SimBricks. The connection to the network is established using the i40e_bm
which is one of the provided Network Interface Cards (NICs) in SimBricks. The
connection to the network is established using an ethernet interface. This setup
does not match a realistic setup since the drone is likely to be wirelessly connected
to the ground station with a much lower bandwidth. However, evaluating the

PCIe

Ethernet Ethernet

PCIe Memory

Physical

Figure 5: Experimental setup in SimBricks with one ground control station and one
ArduPilot host, connected via the network. The ArduPilot instance is connected to the

physical simulation in Gazebo.

29

Ethernet

Ethernet

Ethernet

Ethernet

Physical

Physical

Figure 6: Experimental setup in SimBricks with two ground control stations and two
ArduPilot hosts. Both instances are connected via a shared network simulation and are

simulated in a shared physical environment in Gazebo.

network and the connection to the ground station is left for future work and could
easily be integrated given an appropriate wireless NIC simulator in SimBricks.
The ground station follows a similar setup with a gem5 Linux node connected
via an i40e_bm to the network simulator. On this host, a simple ground control
station partially implementing the MavLink protocol is listening for messages from
ArduPilot and responding with appropriate commands (e.g. arm, takeoff etc.).
On the other side, the ArduPilot host is connected to Gazebo through a memory
device emulating the sensors and actuators and providing the correct file handlers
for Memory-Mapped IO (MMIO). This emulator connects to the Gazebo plugin
to gain access to the physical simulation.

For experiments involving multiple drones, the ground control station and
the drone controller have been replicated for each simulated device. They are
connected to the same network and to the same physics simulator using additional
SimBricks interface instances as shown in figure Figure 6 for two instances.

All experiments have been executed on an AMD Threadripper PRO 5995WX
with 64 cores (128 threads) and 512GB of RAM.

6.2 RQ1: Evaluating Hardware Configurations
One big advantage of a full-system simulation over simulations with a lower
fidelity is that full-system simulators allow to precisely model the hardware which

30

0 3 6 9 12 15 18 21 24 27 30
Simulated Time (s)

0
40
80
120
160
200
240
280
320
360
400

Lo
op

 R
at

e
(H

z)

Reference (400 Hz)
Measured loop rate with 5 GHz
Measured loop rate with 1 GHz
Measured loop rate with 0.5 GHz

(a) Loop rate of ArduPilot’s main control loop.

0 3 6 9 12 15 18 21 24 27 30
Simulated Time (s)

0

1.5

3

4.5

6

7.5

9

10.5

12

A
lti

tu
de

 (
m

)

Altitude with 5GHz
Altitude with 1GHz
Altitude with 0.5GHz

(b) Altitude over ground of the simulated drone.
Figure 7: The impact of different CPU frequencies on ArduPilot’s loop rate and the

observable behavior of the drone.

eventually is to be used in the field. In the setup described in Section 6.1, this
permits evaluating the influence of different CPU models or the impact of lower
network bandwidth or higher sensor noise caused by different (and most likely
cheaper) hardware modules used in the setup.

A recent study [34] has shown that it is possible to tune gem5 CPU
models such that their performance closely matches modern CPUs like the
arm Cortex-R8. For simplicity, for this evaluation only different CPU frequencies
for the TimingSimpleCPU were considered without a specific microarchitecture in
mind.

ArduPilot has one main control loop which ideally runs at 400Hz. In each
iteration, a few high-priority tasks and a subset of lower priority tasks are executed.

31

After each loop, the actual loop duration is used to update the loop rate in order
to slowly settle onto a loop rate that allows executing all the tasks:

loop_rate(𝑡) = 1
0.99 ∗ 1

loop_rate(𝑡−1) + 0.01 ∗ last_loop_duration(𝑡)

If the CPU is not fast enough to run ArduPilot, the loop rate will settle below the
desired 400Hz. There is a runtime check before arming the rotors to ensure that
the loop rate is below 90% of the desired frequency. This check was disabled for
this experiment to show the effect of insufficient hardware configurations.

Figure 7a shows how the loop rate evolves over time with different CPU
frequencies. Note that these numbers have been obtained on the TimingSimpleCPU
model which has very few microarchitectural optimizations and thus does not
directly compare to modern CPUs. At 5Ghz the CPU is fast enough to maintain
a loop rate of 400Hz while at lower frequencies the loop rate drops significantly
below the desired 400Hz. This has noticeable effects on the flight behavior as
shown in Figure 7b. At a lower loop rate, updates are not processed as promptly,
thus changes cannot be mitigated as quickly what may lead to over-corrections,
e.g. around second 23.

One of the analyzed bug fixes in [27] commit 52c4715c was classified as
non-detectable using simulation. This bug affected systems with a low memory
configuration. When running ArduPilot in gem5, the available memory can be
freely adjusted thus allowing to detect this bug.

6.3 RQ2: Detecting Previously Undetectable Bugs
Another shortcoming of existing simulators with lower fidelity is that they usually
introduce a new abstraction layer for simulation purposes. Since the sensors are
not physically available in the simulation, simulated measurements are usually
provided directly to the controller without involving the device drivers which map
the measured values to their actual physical meaning.

This limits the ability of the simulation to detect bugs in those device drivers.
For example, the error fixed commit facd8fc can only be detected when the GPS
sensor fails to provide a 3D fix and only provides a 2D fix which is currently
not possible in the existing SITL simulator. Therefore, it was classified as non-
detectable in [27]. In contrast, the sensors emulated in this project can be easily
extended to provide GPS readings of various qualities at certain points in time,
e.g. limiting the number of satellites in use to only provide a 2D fix. This can be

32

https://github.com/ArduPilot/ardupilot/commit/52c4715c
https://github.com/ArduPilot/ardupilot/commit/52c4715c
https://github.com/ArduPilot/ardupilot/commit/facd8fc
https://github.com/ArduPilot/ardupilot/commit/facd8fc

achieved by adapting the emulator of the GNSS sensor to change the quality of the
signal based on certain circumstances, e.g. the simulated time, the current position
or other sensors signals. In the NMEA standard[33] for example, messages include
the number of satellites in use and the GSA sentence allow to specify whether the
current fix is 2D or 3D.

Another example where this can be useful is to detect the bug fixed in commit
28b98a17. Here, intermittent failures of the compass can trigger an unexpected
landing even if the individual failures only last a small amount of time. To detect
failures of the compass, a simple counter was used which failed to reset once the
compass returned to a healthy state. Thus after several independent and short
failures, an emergency landing would be triggered. The SITL emulator does not
easily allow to specify various short intervals in which a sensor should fail, a sensor
can either be simulated correctly or fail completely. The emulator however allows
to simulate transient failures as required to observe the effects of this bug. Again,
the emulator could introduce these failures based on the simulated time or other
sensors values or randomly with a certain probability.

The patch from commit 36634265 changes how the groundspeed undershoot is
calculated. Previously, this data was taken directly from the GNSS system which
does not account for movements due to wind, i.e. if the acceleration due to the
wind and due to the motors cancel out, the plane will not move according to a
GNSS system. However, when using the groundspeed provided by the Attitude
and Heading Reference System (AHRS) instead, this can be avoided. To detect
this in simulation, the wind needs to be constantly tuned to match the current
acceleration of the UAV. While this is not possible in the SITL simulator, the
presented approach could be configured to account for this allowing to expose
this bug. In such a configuration, the Gazebo plugin could activate the windy
conditions in the physical simulation, again as desired based on the simulation
time or some other property of the state of the simulation like certain sensor
signals.

Generally speaking, the presented approach provides a flexible way to simulate
transient and permanent faults in the emulated devices and allows to dynamically
adjust the environmental parameters at runtime. While randomly inserting faults
is unlikely to reveal the mentioned issues due to the specific requirements to trigger
the faulty behavior, this approach might be useful to avoid regressions by adding
specific tests for those scenarios. Apart from that, this methodology might be

33

https://github.com/ArduPilot/ardupilot/commit/28b98a17
https://github.com/ArduPilot/ardupilot/commit/28b98a17
https://github.com/ArduPilot/ardupilot/commit/36634265
https://github.com/ArduPilot/ardupilot/commit/36634265

0 3 6 9 12 15 18 21 24 27 30
Time (seconds)

0
250
500
750
1000
1250
1500
1750
2000
2250
2500

Sl
ow

do
w

n
fa

ct
or

Slowdown with 1 drone

Figure 8: The slowdown factor over time for the experiment shown in Figure 5, sampled at
intervals of 1ms.

useful to reproduce behavior reported by users that would be difficult to reproduce
in reality due to very specific environmental requirements.

6.4 RQ3 & RQ4: Performance & Scalability
Simulating complex systems at a higher fidelity comes at a cost. One important
number to consider is the slowdown factor of the simulation, i.e. the amount of
real time it takes to simulate one time interval in the simulation. For example, a
slowdown factor of 600 means that for each simulated second, the simulation will
take 10 minutes. The slowdown factor determines if certain tests are feasible and
how many different tests can be conducted within the required timeframe.

Synchronized simulations in SimBricks are generally slower than other types of
simulation since all components are simulated separately and due to synchroniza-
tion, the slowest simulator determines the simulation speed. On the other hand,
each simulator runs in its own process, thus given enough CPU cores, adding more
simulators to a simulation does not necessarily slow down the entire simulation.

This slowdown factor is obtained by analyzing the progress of the physical
simulation. A separate logger subscribes to the /clock topic of the Gazebo
simulation and records both the timestamp on the host and the simulated time in
Gazebo. The average slowdown is then computed using:

average_slowdown =
𝑡end,host − 𝑡start,host

𝑡end, simulation − 𝑡start,simulation

34

With one simulated drone, the average slowdown factor of the setup in Figure 5
is ∼500𝑥. As shown in Figure 8, the slowdown factor is not constant but changes
over time depending on the necessary computations. The slowdown can get as
low as ∼250𝑥 and as high as ∼2500𝑥 when sampling at intervals of 1ms. This
highlights the importance of constant synchronization as used in SimBricks instead
of reducing the simulation speed of certain components to roughly match the speed
of the slowest simulator (using the average slowdown over the entire simulation).
Although this approach might appear a good option to reduce the overall slowdown
and to avoid implementing proper synchronization mechanisms, doing so might
cause large differences in the local timestamp of two connected simulators even
though the local clocks will eventually converge to the same number.

Unfortunately, SimBricks does not provide any tracing mechanisms to record
the messages exchanged on each interface or to visualize the progress of each
simulator which would be useful to analyze the bottlenecks of this approach. In
this setup, the device emulator has the advantage that it is both connected to
the host simulation and the physical simulation and thus can be used for some
basic profiling. Before advancing its local clock, the device emulator needs to
wait until both interfaces allow to proceed further. By recording which interface
advances first and how many more (host) cycles are needed until the other interface
proceeds, it is possible to see which side of the simulation slows down the entire
system most. For one drone about 27% of the wait time is spent on waiting for
the physical interface (Gazebo) while 73% of the time, the delay can be attributed
to the host side (gem5 with ArduPilot, the network simulator and the simulation
of the ground control station). This indicates that the simulation speed is limited
by the software simulation.

Figure 9 shows how the slowdown changes when multiple drones are simulated
as shown in Figure 6. This experiment indicates that the slowdown is linear in
the number of simulated drones. Again, looking at the wait time of the device
emulator allows to break down which part of the simulation causes most delays.
Figure 10 summarizes this result for all tested configurations. In contrast to the
results from above for one drone, for two drones 67% of the wait time can be
attributed to the physical simulation while only 33% of the delay is due to the host
simulation. The latter decreases even further with more simulated drones. This
indicates that the physical simulator is now slowing down the simulation due to
the higher complexity of multiple simulated drones since all devices are simulated

35

0 2 4 6 8 10 12 14 16
Number of simulated drones

0
400
800
1200
1600
2000
2400
2800
3200
3600

Av
er

ag
e

Sl
ow

do
w

n
fa

ct
or Average Slowdown

Figure 9: The average slowdown factor for various configurations with different numbers of
simulated CPS configured as shown in Figure 6.

0 2 4 6 8 10 12 14 16
Number of simulated drones

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

T
im

e
sp

en
t

(%
)

Physical Interface
Memory Interface

Figure 10: Percentage of time spent waiting in the device emulator for the physical interface
and the memory interface to proceed (relative to the total wait time) with different numbers

of simulated CPS.

in one physical simulation. Gazebo currently does not provide a multithreaded
physical simulation since the dynamics simulator ODE[24] relies on singletons that
are not thread-safe[35]. Thus, adding more drones to the simulation decreases the
simulation speed since more calculations need to be completed for every simulated
time interval.

In comparison with the existing integration of Gazebo into ArduPilot’s SITL
simulator[36] which does not provide synchronization between the simulated
components, the slowdown is (as expected) generally much lower. However, when
increasing the number of simulated devices, the slowdown quickly starts to rise
even at a higher rate from a slowdown factor of ∼4𝑥 with one drone to ∼580𝑥 with

36

0 2 4 6 8 10 12 14 16
Number of simulated drones

0
80
160
240
320
400
480
560
640
720
800

Av
er

ag
e

Sl
ow

do
w

n
fa

ct
or Average Slowdown

Figure 11: Average slowdown factor for experiments with different numbers of simulated
CPS, simulated using the existing ArduPilot SITL simulator and the existing Gazebo

plugin[36].

16 drones. Due to the unsynchronized simulation the connection between the SITL
driver and Gazebo also frequently times out when simulating multiple drones. If
the SITL simulator does not receive at least one message within a certain time
interval (real time on the simulation host), the connection times out, even though
the physical simulation was just too slow.

6.5 RQ5: Implementation Effort
Several components had to be implemented to do the above evaluation. Some
of those implementations are independent of the simulated CPS while other
parts were specifically designed to support ArduPilot and the simulated drone
in Gazebo.

Table 2 summarizes the size of each component in terms of lines of code. The
numbers were obtained using Cloc[37]. The definition of the physical interface
should not need to be modified to support other CPS. As described in Chapter 4,
the interface was designed such that it supports a large variety of sensors and
actuators without any modifications.

The Gazebo plugin and the custom kernel module to make the emulated
devices available in gem5 contain some elements that are specific to simulations
with ArduPilot, however the overall structure could serve as a basis for future
work integrating other types of CPS.

Out of all components, the device emulator requires most implementation
effort to support additional hardware. As described in Section 5.3, the current

37

Component
Programming
Language

Lines of Code

Physical Interface Definition C++ 182
Gazebo Plugin C++ 868
Custom Kernel Module C 547
Device Emulator C++ 2778
Drone Definition² XML/SDF 794
World Definition XML/SDF 174
Simulator Definition Python 98
Experiment Script Python 92
Gazebo Logger C++ 331

Table 2: Lines of code required to implement the evaluated setup from Chapter 6.

implementation provides an interface to easily integrate additional sensors or
actuators, however, the main effort consists of correctly implementing every
control register according to the specification and ensuring that the required
configurations are correctly supported.

On the Gazebo side, each experiment requires the definition of the world and
the simulated models. The model for the simulated drone is a slightly adapted
version of the iris_with_gimbal model from [36]. The world definition then only
need to take into account how many drones should be placed where in the simu-
lated world. The complexity of these definitions depends largely on the desired
level of detail. Since in this project no comparison with any commercially available
drone was made, there was no need for a more detailed model of the CPS. In
general, a model is required in other approaches as well. This can be either a
mathematical model or a description in a format like SDF (as it is the case for
the ArduPilot Gazebo plugin [36]).

Apart from that, a Python class for every simulated entity is required to define
the available options and how they translate to command line arguments for the
components. Those classes are then used in the experiment script to instantiate
the simulators as shown in Listing 1. This code is tailored to the specific setup
and thus needs to be adapted for each experiment.

To obtain the slowdown in Section 6.4, an additional logger has been imple-
mented to log relevant data at runtime. This logger is however not required for
the simulation.

²excluding visuals, slightly adapted from the ArduPilot Gazebo plugin[36]

38

7 Related Work

Various simulation techniques have been proposed to examine CPS, some focussing
more on the control logic while others focus on the physical simulation.

TrueTime[38] is an early example that focusses on embedded control systems
modeled fully in Matlab/Simulink. Their work introduces computer blocks in the
Simulink model which allow executing C++ functions like interrupt handlers.
However, implementing a complex controller like ArduPilot would take a signif-
icant amount of work and might introduce inconsistencies.

Mambo[39] on the other hand focusses on accurately simulating PowerPC
hardware and included support for UART devices. This simulator provides a
graphical interface to debug at the OS level. Unfortunately, the paper does not
provide any details on how the UART interface is implemented and whether a
similar approach could be used to interactively simulate CPS.

More recent work on CPS-Sim[40] integrated Matlab/Simulink with a network
simulator allowing for more precise time synchronization compared to previous
work. This approach is mostly focussed on using the network as communication
medium between CPS, integration into larger setups with heterogeneous simula-
tors (e.g. to also simulate the ground control station) is currently not possible in
this framework.

RoSÉ[41] provides an integration of AirSim[42] with FireSim[43] to evaluate
domain-specific accelerators for robotics in simulation. Sensor data of a UAV is
provided by AirSim and transferred to FireSim similar to the approach presented
in the last chapters. As this paper does not propose a standardized interface, it
would be harder to integrate the simulation of other components like the network.

The commercially available Simics[44] simulator does allow devices to be
connected via serial ports. However, it currently lacks an integration of a physics
simulator and thus in its current state is not able to effectively simulate CPS.

Apart from those general-purpose simulators that (partially) support CPS
or other external devices, there are also some specialized simulators for different
domains. For simulating UAVs, there is FlyNetSim[45] a simulation platform that
focusses on the network communication between UAVs. Realistic flight simulation
is also important in pilot training[46] or for video games where users can control
different kinds of aircraft like Microsoft Flight Simulator[47] or X-Plane[48]. How-

39

ever, in the latter simulating visually at a high quality is usually more important
than accuracy.

Regarding the emulation of sensors there is MIXED-SENSE[49] where the
authors aim to recreate signals including latencies and noise. This approach then
allows to emulate physical attacks on CPS such as replay attacks for GNSS signals.
There are also various articles focussing on the simulation of IMU sensors [50, 51]
for a given trajectory. This exceeds the requirements of this project as Gazebo
already provides the IMU data and the emulator then needs to convert it into a
sensor-specific format. As mentioned in Section 4.3, [28] proposes an approach to
validate those models.

40

8 Discussion and Future Work

The results presented in the previous chapters highlight both the strengths and
that limitations of the proposed framework. While it enables high-fidelity simula-
tion for CPS, several challenges remain, in particular regarding scalability and
accuracy. This chapter outlines possible directions for future work that could help
address these limitations and broaden the applicability of the presented approach.

8.1 Improving the performance of the physical simulation
The evaluation section has revealed that the physical simulation does not scale
perfectly to a large number of devices. However, to apply this approach to some
other areas like vehicle-to-infrastructure communication or factory modeling, the
concurrent simulation of many different entities inside one environment is required.
There are various options on how future work might help to improve the scalability
of the physical simulation.

One observation is that some entities only need to be modeled to allow mea-
suring their influence on other entities and the evaluation focusses on a few main
devices. In this case good results might still be obtained even if those surrounding
entities are modeled with a lower precision. Such mixed-fidelity simulations might
allow to decrease the amount of computations required in each step of the physical
simulation allowing to improve the overall simulation time.

Additionally, it might be possible to separate the environment into blocks
in which the simulated entities can be assumed to act independently. Using this
approach it might be possible to split the simulation into various fragments
allowing for more parallelism. Though, it is not obvious how those blocks could
be determined and how the transition of an object between two of those blocks
might look like.

A similar approach was implemented in earlier versions of Gazebo [52]. Thus,
it might be possible that this feature is added back in a future release. There are
two recent issues ([53], [54]) requesting improvements in this area, however, the
development team has not yet detailed whether this is feasible and planned to add
in the future.

Currently not only the physical simulation is constraining the feasibility of
larger-scale simulations. To maximize the simulation speed, SimBricks interfaces
constantly poll for new messages, i.e. even simulators that do not need to complete

41

complex computations fully use one core of the host system. As soon as the number
of simulated devices exceeds the number of available cores, the simulation speed
will reduce drastically since a lot of context switches will be required and the
scheduler cannot distinguish simulators that are waiting for other simulators to
catch up from those lagging behind the other simulators. In order to simulate an
environment with many components, the number of processes should therefore be
limited. It might be possible to co-locate the simulation of various simple compo-
nents in one process, especially if those components only require a behavioral
simulation. This could allow to reduce the number of required cores to permit
simulating more complex systems with reasonable hardware requirements.

8.2 Simulating external conditions
Gazebo allows to specify various external factors like wind or rain using simulated
fluids. In order to precisely model the impact of those conditions, the model
of the CPS might need to be refined to capture e.g. how the surface’s friction
changes when wet or whether the weight of the device changes in rainy conditions.
Some existing simulators already allow to simulate those conditions [55] with a
lower fidelity, however, the missing synchronization does not allow to vary those
conditions depending on the current simulation time. It is left to future work to
explore the effects of environmental factors on the simulated devices using the
presented approach.

8.3 Validating the accuracy of the simulation
One question left open in this project is the validation of the simulation results.
In order to draw reliable conclusions from the simulation results, one must have a
certain confidence that the simulation results are accurate and match the behavior
of a physical testbench. However, such a testbench might not always be available.
Even if such a testbench is available, reproducing the results from the simulation
might be hard since the environmental conditions need to match closely. Slight
variations e.g. in temperature or position might lead to significant observable
differences over time. It is left to future work to explore how the simulation
results can be validated once a physical implementation is available. In many
cases it might be important to also choose the validation scenarios wisely to avoid
damaging the hardware especially since the validation likely requires analyzing
unusual circumstances that might lead to damaged hardware.

42

8.4 Choice of the right simulator
Chapter 6 has shown that the presented approach allows to use the simulation
for purposes that were previously infeasible to accomplish in simulation. However,
especially Section 6.4 has also shown that this increase in fidelity comes at the
cost of much higher simulation time.

Thus it is important to carefully choose the simulation approach for a specific
project. Existing simulators like the ArduPilot SITL simulators are sufficient for
many purposes. Several bugs in [27] are easily detectable in this simulator. For
example the bug fixed in commit a185fa95 caused the UAV to disarm unexpect-
edly since IDLE checks were performed even while the motors were unarmed.
Another example is commit e583ade6 which fixes an issue where the acceleration
was measured in ms instead of cms . Other specialized simulators like FlyNetSim[45]
might be more performant compared to this more general approach presented
above, especially when the simulation is used to analyze specific components or
properties of the system to which this simulator is tailored to, e.g. the network
communication.

In cases where the simulation should help answering more fundamental ques-
tions like whether a rotor of a certain size or shape is able to lift the weight of
an UAV, a mathematical model might be suited best as implementation specific
details like delays do not influence the results. In those cases Matlab/Simulink
might be a good choice to help with those computations.

43

https://github.com/ArduPilot/ardupilot/commit/a185fa95
https://github.com/ArduPilot/ardupilot/commit/a185fa95
https://github.com/ArduPilot/ardupilot/commit/e583ade6
https://github.com/ArduPilot/ardupilot/commit/e583ade6

9 Conclusion

Simulation of CPS is an important tool in their development. However, existing
simulators are only capable to simulate certain scenarios. The previous chapters
introduced an approach to provide modular full-system simulations for CPS by
extending the SimBricks framework.

The proposed interface allows to integrate physics simulators into the
SimBricks ecosystem in order to provide accurate data for sensor signals taking
actuator commands into account. This data is then used to emulate specific
sensors connected to the simulation of the CPS’s control software. This has several
advantages over existing simulators such as the ability to run unmodified software
and do the emulation transparently. The simulators also allow to easily adjust
the simulated hardware (e.g. CPU frequencies, memory sizes etc.) and to easily
replace sensors with emulators for different models.

This design has been implemented to support the Gazebo physics simulator
and several emulated sensors that allowed an evaluation using ArduPilot. This
evaluation has confirmed that the simulation is indeed capable of demonstrating
the impact of different hardware choices and of detecting certain bugs that were
previously hard to detect in simulation. However, this also comes at the cost of a
significantly higher slowdown over realtime causing long running experiments.

Thus, it is crucial to evaluate the capabilities and tradeoffs of various different
simulators with different levels of fidelity to choose the best option for a specific
use case. Nonetheless, the evaluation has shown that this approach is promising
for several use cases. Future work could explore integrating additional physics
simulators, supporting more sensor and actuator types, or improving the perfor-
mance of the simulation framework. Furthermore, the approach could be applied
to a broader range of cyber-physical systems, enabling research in areas such as
robotics, autonomous vehicles, and industrial automation.

45

Glossary

Acronyms
AHRS – Attitude and Heading Reference System: A system that combines

data from multiple sources to obtain the orientation and acceleration of an
aircraft.

CPS – Cyber-Physical Systems: Digital systems that interface with their
physical environment through sensors and actuators. Common examples include
cars, airplanes, drones and other types of robots.

ENU – East-North-Up: A coordinate system where 𝑥 corresponds to the
eastern direction, 𝑦 to north and 𝑧 points upwards.

GNSS – Global Navigation Satellite System: A system used for positioning
using signals from multiple satellites providing worldwide coverage. Common
examples include GPS (operated by the United States of America), Galileo
(operated by the European Union), GLONASS (operated by Russia) and
BeiDou (operated by China).

HAL – Hardware Abstraction Layer: An abstraction layer providing a
common application interface to access hardware components enabling cross
platform compatibility.

HOET – highest observed execution time: The longest execution time of a
given program observed while testing or during deployment.

I²C – Inter-Integrated Circuit: A common interface for inter-chip communi-
cation. It only has two signals, a clock and a data signal and thus only allows
for half-duplex communication.

MMIO – Memory-Mapped IO: A common way of interacting with external
devices. The device’s control registers are mapped to a specific memory location
and can be read or written by accessing this memory location. Those accesses
are then forwarded to the physical device using the device-specific protocol.

NED – North-East-Down: A coordinate system where 𝑥 corresponds to the
northern direction, 𝑦 to east and 𝑧 points downwards.

NIC – Network Interface Card: A hardware component that provides network
connectivity to computers.

I

SITL – Software in the Loop: As opposed to hardware in the loop, SITL refers
to simulators that do not require any hardware components and simulate the
entire system.

SPI – Serial Peripheral Interface: A common interface for inter-chip commu-
nication. In a 1-to-1 setup, there are three wires, the serial clock and one data
signal for each direction allowing for full-duplex communication.

UART – Universal Asynchronous Receiver Transmitter: A device imple-
menting an asynchronous interface for inter-chip communication. Data is
transmitted bit by bit with an optional parity bit. UART is also commonly used
to refer to the protocol itself instead of the device implementing it.

UAV – Unmanned Aerial Vehicle: A class of CPS autonomously operating
in the air.

WCET – worst-case execution time: An upper bound on the execution time
of a program, usually by pessimistically over-approximating the actual runtime.

Software
ArduPilot: A control software suite for various types of unmanned vehicles such

as copters, planes, rovers and boats, https://ardupilot.org
CARLA: An autonomous driving simulator supporting generated worlds, traffic

and other obstacles, https://carla.org
Gazebo: An extensible physics simulation tool developed by OpenRobotics,

https://gazebosim.org/home
gem5: A system simulator supporting different levels of fidelity and different CPU

architectures, https://gem5.org
Matlab: A commercial platform for numerical computations, https://mathworks.

com/products/matlab.html
MavLink: A protocol definition commonly used for communication with UAV

and other embedded systems, https://mavlink.io
OMNet++: A framework to build simulators for network applications and

networked communications, https://omnetpp.org
Orocos – Open Robot Control Software: A collection of C++ libraries to

design robot control systems, https://orocos.org
PX4: A control software for drones developed by the Dronecode Foundation,

https://px4.io

II

https://ardupilot.org
https://carla.org
https://gazebosim.org/home
https://gem5.org
https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://mavlink.io
https://omnetpp.org
https://orocos.org
https://px4.io

ROS – Robot Operating System: A collection of libraries helping to design
robot applications developed by OpenRobotics, https://ros.org

SimBricks: A framework that allows virtual prototyping of systems by orchestrat-
ing different, specialized simulators for individual components of the simulated
system, https://simbricks.io

Simulink: An environment to design and simulate CPS integrated into the Matlab
platform, https://mathworks.com/products/simulink.html

III

https://ros.org
https://simbricks.io
https://mathworks.com/products/simulink.html

List of Figures

Figure 1 Simulator configuration for a SimBricks simulation involving two
hosts connected over the network. 7

Figure 2 Messages sent during setup and normal operation of the physical
interface with polling. 16

Figure 3 Messages sent during setup and normal operation of the physical
interface with pushing . 17

Figure 4 Gazebo’s ENU coordinate system vs. ArduPilot’s NED system . . . 25
Figure 5 Experimental setup in SimBricks with one ground control station and

one ArduPilot host, connected via the network. The ArduPilot
instance is connected to the physical simulation in Gazebo. 29

Figure 6 Experimental setup in SimBricks with two ground control stations
and two ArduPilot hosts. Both instances are connected via a shared
network simulation and are simulated in a shared physical
environment in Gazebo. 30

Figure 7 The impact of different CPU frequencies on ArduPilot’s loop rate and
the observable behavior of the drone. 31

Figure 8 The slowdown factor over time for the experiment shown in Figure 5,
sampled at intervals of 1ms. 34

Figure 9 The average slowdown factor for various configurations with different
numbers of simulated CPS configured as shown in Figure 6. 36

Figure 10 Percentage of time spent waiting in the device emulator for the
physical interface and the memory interface to proceed (relative to
the total wait time) with different numbers of simulated CPS. 36

Figure 11 Average slowdown factor for experiments with different numbers of
simulated CPS, simulated using the existing ArduPilot SITL
simulator and the existing Gazebo plugin[36]. 37

List of Tables

Table 1 Predefined metrics for the physical interface with their respective `ID`,
unit and the default conversion factor. 24

Table 2 Lines of code required to implement the evaluated setup from
Chapter 6. 38

V

List of Code Listings

Listing 1 Configuration script for the SimBricks simulation shown in Figure 1 . 8
Listing 2 The definition of a world in the SDF format. It includes only one

object of a certain size that is equipped with a GNSS sensor. 11
Listing 3 The intro messages sent via the physical interface upon

initializing the connection. 21
Listing 4 The configuration messages used to introduce the available sensors

and actuators and to configure how sensor signals should be
transmitted. 22

Listing 5 The messages used to exchange data on the physical interface. The
generic val_1 - val_8 may hold different values depending on the
specific sensor or actuator type. 23

Listing 6 The interface implemented by the emulators of sensors and
actuators. 26

VI

Bibliography

[1] M. Dowson, “The Ariane 5 software failure,” ACM SIGSOFT Softw. Eng.
Notes, vol. 22, no. 2, p. 84, 1997, doi: 10.1145/251880.251992.

[2] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on their
trustworthiness,” in 10th IEEE International Symposium on Industrial Em"
bedded Systems, SIES 2015, Siegen, Germany, June 8"10, 2015, IEEE, 2015,
pp. 39–48. doi: 10.1109/SIES.2015.7185039.

[3] P. Axer et al., “Building timing predictable embedded systems,” ACM Trans.
Embed. Comput. Syst., vol. 13, no. 4, pp. 1–37, 2014, doi: 10.1145/2560033.

[4] Open Robotics, “ROS (Robot Operating System).” [Online]. Available:
https://www.ros.org/

[5] H. Bruyninckx, “Open Robot Control Software: the OROCOS project,” in
Proceedings of the 2001 IEEE International Conference on Robotics and
Automation, ICRA 2001, May 21"26, 2001, Seoul, Korea, IEEE, 2001, pp.
2523–2528. doi: 10.1109/ROBOT.2001.933002.

[6] Dronecode Project, Inc., “PX4.” [Online]. Available: https://px4.io/
[7] ArduPilot Development Team, “ArduPilot.” [Online]. Available: https://

ardupilot.org/
[8] ArduPilot Dev Team, “Corporate Partners.” Accessed: Jul. 21, 2025. [Online].

Available: https://ardupilot.org/ardupilot/docs/common-partners.html
[9] Dronecode Project, Inc., “Commercial Systems.” Accessed: Jul. 21, 2025.

[Online]. Available: https://px4.io/ecosystem/commercial-systems/
[10] Dronecode Project, Inc., “MAVLink.” [Online]. Available: https://mavlink.io/
[11] ArduPilot Dev Team, “ArduPilot Custom Firmware Builder.” Accessed: Jul.

21, 2025. [Online]. Available: https://custom.ardupilot.org/add_build
[12] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation envi-

ronment,” in Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Work"
shops, SimuTools 2008, Marseille, France, March 3"7, 2008, S. Molnár, J.
R. Heath, O. Dalle, and G. A. Wainer, Eds., ICST/ACM, 2008, p. 60. doi:
10.4108/ICST.SIMUTOOLS2008.3027.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun, “CARLA:
An Open Urban Driving Simulator,” in 1st Annual Conference on Robot
Learning, CoRL 2017, Mountain View, California, USA, November 13"15,
2017, Proceedings, in Proceedings of Machine Learning Research, vol. 78.

VII

https://doi.org/10.1145/251880.251992
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1145/2560033
https://www.ros.org/
https://doi.org/10.1109/ROBOT.2001.933002
https://px4.io/
https://ardupilot.org/
https://ardupilot.org/
https://ardupilot.org/ardupilot/docs/common-partners.html
https://px4.io/ecosystem/commercial-systems/
https://mavlink.io/
https://custom.ardupilot.org/add_build
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027

PMLR, 2017, pp. 1–16. [Online]. Available: http://proceedings.mlr.press/v
78/dosovitskiy17a.html

[14] H. Li, J. Li, and A. Kaufmann, “SimBricks: end-to-end network system eval-
uation with modular simulation,” in SIGCOMM '22: ACM SIGCOMM 2022
Conference, Amsterdam, The Netherlands, August 22 " 26, 2022, F. Kuipers
and A. Orda, Eds., ACM, 2022, pp. 380–396. doi: 10.1145/3544216.3544253.

[15] gem5 Development Team, “gem5 Simulator.” [Online]. Available: https://
www.gem5.org/

[16] N. L. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, no. 2, pp. 1–7, 2011, doi: 10.1145/2024716.2024718.

[17] J. Lowe-Power et al., “The gem5 Simulator: Version 20.0+,” CoRR, 2020,
[Online]. Available: https://arxiv.org/abs/2007.03152

[18] Fabrice Bellard, “QEMU.” [Online]. Available: https://www.qemu.org/
[19] ns-3 Development Team, “ns-3.” [Online]. Available: https://www.nsnam.

org/
[20] W. Snyder, “Verilator.” [Online]. Available: https://veripool.org/verilator/
[21] I. The MathWorks, “Matlab.” [Online]. Available: https://www.mathworks.

com/products/matlab.html
[22] I. The MathWorks, “Simulink.” [Online]. Available: https://www.mathworks.

com/products/simulink.html
[23] Open Source Robotics Foundation, “Gazebo.” [Online]. Available: https://

gazebosim.org/
[24] R. Smith, “Open Dynamics Engine.” [Online]. Available: https://www.ode.

org/
[25] Open Source Robotics Foundation, “SDFormat.” [Online]. Available: http://

sdformat.org/
[26] P. Lu and Q. Geng, “Real-time simulation system for UAV based on

Matlab/Simulink,” in 2011 IEEE 2nd International Conference on Comput"
ing, Control and Industrial Engineering, 2011, pp. 399–404. doi: 10.1109/
CCIENG.2011.6008043.

[27] C. S. Timperley, A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues,
“Crashing Simulated Planes is Cheap: Can Simulation Detect Robotics Bugs
Early?,” in 11th IEEE International Conference on Software Testing, Verifi"
cation and Validation, ICST 2018, Västerås, Sweden, April 9"13, 2018, IEEE
Computer Society, 2018, pp. 331–342. doi: 10.1109/ICST.2018.00040.

[28] P. Rosenberger et al., “Towards a Generally Accepted Validation Method-
ology for Sensor Models - Challenges, Metrics, and First Results,” Graz,

VIII

http://proceedings.mlr.press/v78/dosovitskiy17a.html
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1145/3544216.3544253
https://www.gem5.org/
https://www.gem5.org/
https://doi.org/10.1145/2024716.2024718
https://arxiv.org/abs/2007.03152
https://www.qemu.org/
https://www.nsnam.org/
https://www.nsnam.org/
https://veripool.org/verilator/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://gazebosim.org/
https://gazebosim.org/
https://www.ode.org/
https://www.ode.org/
http://sdformat.org/
http://sdformat.org/
https://doi.org/10.1109/CCIENG.2011.6008043
https://doi.org/10.1109/CCIENG.2011.6008043
https://doi.org/10.1109/ICST.2018.00040

Austria, May 2019. [Online]. Available: http://tuprints.ulb.tu-darmstadt.
de/8653/

[29] J. C. Hart, G. K. Francis, and L. H. Kauffman, “Visualizing quaternion
rotation,” ACM Trans. Graph., vol. 13, no. 3, pp. 256–276, Jul. 1994, doi:
10.1145/195784.197480.

[30] TE Connectivity / Measurement Specialties, “MS5611-01BA03 Baro-
metric Pressure Sensor, with stainless steel cap.” [Online]. Avail-
able: https://www.te.com/commerce/DocumentDelivery/DDEController?
Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data%20Sheet&
DocLang=English&DocFormat=pdf&PartCntxt=MS561101BA03-50

[31] InvenSense, “MPU-9250 Product Specification Revision 1.1.” [On-
line]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/
PS-MPU-9250A-01-v1.1.pdf

[32] AKM, “AK8963 3-axis Electronic Compass.” [Online]. Available: https://
web.archive.org/web/20190803054413/https://www.akm.com/akm/en/file/
datasheet/AK8963C.pdf

[33] National Marine Electronics Association, “NMEA 0183 Standard.” 2002.
[34] I. Wang, P. Chakraborty, Z. Y. Xue, and Y. F. Lin, “Evaluation

of gem5 for performance modeling of ARM Cortex-R based embedded
SoCs,” Microprocess. Microsystems, vol. 93, p. 104599, 2022, doi: 10.1016/
J.MICPRO.2022.104599.

[35] D. Ferigo, “Multithreading in Ignition Gazebo.” Accessed: Jul. 21, 2025.
[Online]. Available: https://github.com/robotology-legacy/gym-ignition/
discussions/363#discussioncomment-936604

[36] ArduPilot Development Team, “ArduPilot Gazebo Plugin.” [Online]. Avail-
able: https://github.com/ArduPilot/ardupilot_gazebo

[37] A. Danial, “cloc: v2.06.” [Online]. Available: https://doi.org/10.5281/zenodo.
15734241

[38] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen, “How does
control timing affect performance? Analysis and simulation of timing using
Jitterbug and TrueTime,” IEEE Control Systems Magazine, vol. 23, no. 3,
pp. 16–30, 2003, doi: 10.1109/MCS.2003.1200240.

[39] P. J. Bohrer et al., “Mambo: a full system simulator for the PowerPC archi-
tecture,” SIGMETRICS Perform. Evaluation Rev., vol. 31, no. 4, pp. 8–12,
2004, doi: 10.1145/1054907.1054910.

[40] A. Suzuki, K. Masutomi, I. Ono, H. Ishii, and T. Onoda, “CPS-Sim: Co-Sim-
ulation for Cyber-Physical Systems with Accurate Time Synchronization,”

IX

http://tuprints.ulb.tu-darmstadt.de/8653/
http://tuprints.ulb.tu-darmstadt.de/8653/
https://doi.org/10.1145/195784.197480
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data%20Sheet&DocLang=English&DocFormat=pdf&PartCntxt=MS561101BA03-50
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data%20Sheet&DocLang=English&DocFormat=pdf&PartCntxt=MS561101BA03-50
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=MS5611-01BA03&DocType=Data%20Sheet&DocLang=English&DocFormat=pdf&PartCntxt=MS561101BA03-50
https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://web.archive.org/web/20190803054413/https://www.akm.com/akm/en/file/datasheet/AK8963C.pdf
https://web.archive.org/web/20190803054413/https://www.akm.com/akm/en/file/datasheet/AK8963C.pdf
https://web.archive.org/web/20190803054413/https://www.akm.com/akm/en/file/datasheet/AK8963C.pdf
https://doi.org/10.1016/J.MICPRO.2022.104599
https://doi.org/10.1016/J.MICPRO.2022.104599
https://github.com/robotology-legacy/gym-ignition/discussions/363#discussioncomment-936604
https://github.com/robotology-legacy/gym-ignition/discussions/363#discussioncomment-936604
https://github.com/ArduPilot/ardupilot_gazebo
https://doi.org/10.5281/zenodo.15734241
https://doi.org/10.5281/zenodo.15734241
https://doi.org/10.1109/MCS.2003.1200240
https://doi.org/10.1145/1054907.1054910

IFAC"PapersOnLine, vol. 51, no. 23, pp. 70–75, 2018, doi: https://doi.org/
10.1016/j.ifacol.2018.12.013.

[41] D. Nikiforov, S. C. Dong, C. L. Zhang, S. Kim, B. Nikolic, and Y. S.
Shao, “RoSÉ: A Hardware-Software Co-Simulation Infrastructure Enabling
Pre-Silicon Full-Stack Robotics SoC Evaluation,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ISCA 2023,
Orlando, FL, USA, June 17"21, 2023, Y. Solihin and M. A. Heinrich, Eds.,
ACM, 2023, pp. 1–15. doi: 10.1145/3579371.3589099.

[42] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual
and Physical Simulation for Autonomous Vehicles,” CoRR, 2017, [Online].
Available: http://arxiv.org/abs/1705.05065

[43] S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out
System Simulation in the Public Cloud,” in 45th ACM/IEEE Annual Inter"
national Symposium on Computer Architecture, ISCA 2018, Los Angeles, CA,
USA, June 1"6, 2018, M. Annavaram, T. M. Pinkston, and B. Falsafi, Eds.,
IEEE Computer Society, 2018, pp. 29–42. doi: 10.1109/ISCA.2018.00014.

[44] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,” Com"
puter, vol. 35, no. 2, pp. 50–58, 2002, doi: 10.1109/2.982916.

[45] S. Baidya, Z. Shaikh, and M. Levorato, “FlyNetSim: An Open Source
Synchronized UAV Network Simulator based on ns-3 and Ardupilot,” in Pro"
ceedings of the 21st ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, MSWiM 2018, Montreal, QC,
Canada, October 28 " November 02, 2018, A. Boukerche, S. S. Kanhere, and
P. Bellavista, Eds., ACM, 2018, pp. 37–45. doi: 10.1145/3242102.3242118.

[46] G. M. T. McLean, S. Lambeth, and T. Mavin, “The Use of Simulation in
Ab Initio Pilot Training,” The International Journal of Aviation Psychology,
vol. 26, no. 1–2, pp. 36–45, 2016, doi: 10.1080/10508414.2016.1235364.

[47] A. Chansanchai, “As real as it gets: Pilots lend their expertise to
the most authentic flight sim on the market.” Accessed: Jul. 21,
2025. [Online]. Available: https://news.microsoft.com/source/features/work-
life/as-real-as-it-gets-pilots-lend-their-expertise-to-the-most-authentic-flight-
sim-on-the-market/

[48] Laminar Reasearch, “Press Kit.” Accessed: Jul. 21, 2025. [Online]. Available:
https://www.x-plane.com/press-kit/

[49] K. A. Pant, L.-Y. Lin, J. Kim, W. Sribunma, J. M. Goppert, and I. Hwang,
“MIXED-SENSE: A Mixed Reality Sensor Emulation Framework for Test
and Evaluation of UAVs Against False Data Injection Attacks,” in IEEE/
RSJ International Conference on Intelligent Robots and Systems, IROS 2024,

X

https://doi.org/https://doi.org/10.1016/j.ifacol.2018.12.013
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.12.013
https://doi.org/10.1145/3579371.3589099
http://arxiv.org/abs/1705.05065
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/2.982916
https://doi.org/10.1145/3242102.3242118
https://doi.org/10.1080/10508414.2016.1235364
https://news.microsoft.com/source/features/work-life/as-real-as-it-gets-pilots-lend-their-expertise-to-the-most-authentic-flight-sim-on-the-market/
https://news.microsoft.com/source/features/work-life/as-real-as-it-gets-pilots-lend-their-expertise-to-the-most-authentic-flight-sim-on-the-market/
https://news.microsoft.com/source/features/work-life/as-real-as-it-gets-pilots-lend-their-expertise-to-the-most-authentic-flight-sim-on-the-market/
https://www.x-plane.com/press-kit/

Abu Dhabi, United Arab Emirates, October 14"18, 2024, IEEE, 2024, pp.
12414–12419. doi: 10.1109/IROS58592.2024.10802327.

[50] M. Parés Calaf, J. Rosales, and I. Colomina, “Yet another IMU simulator:
validation and applications,” p. , [Online]. Available: https://www.isprs.org/
proceedings/2008/euroCOW08/euroCOW08_files/papers/20.pdf

[51] T. Brunner, J.-P. Lauffenburger, S. Changey, and M. Basset, “Magnetometer-
Augmented IMU Simulator: In-Depth Elaboration,” Sensors, vol. 15, no. 3,
pp. 5293–5310, 2015, doi: 10.3390/s150305293.

[52] Open Source Robotics Foundation, “Gazebo Parallel Physics Report.” 2015.
[53] YanningDai, “CPU Multithreading in Gazebo Harmonic.” Accessed: Jul. 21,

2025. [Online]. Available: https://github.com/gazebosim/gz-sim/issues/2764
[54] cmeng-gao, “How to improve CPU/GPU utilization in Gazebo simulation

calculations.” Accessed: Jul. 21, 2025. [Online]. Available: https://github.
com/gazebosim/gz-sim/issues/2982

[55] ArduPilot Dev Team, “Using Simulation Parameters to Control the Simula-
tion.” Accessed: Jul. 21, 2025. [Online]. Available: https://ardupilot.org/dev/
docs/SITL_simulation_parameters.html

XI

https://doi.org/10.1109/IROS58592.2024.10802327
https://www.isprs.org/proceedings/2008/euroCOW08/euroCOW08_files/papers/20.pdf
https://www.isprs.org/proceedings/2008/euroCOW08/euroCOW08_files/papers/20.pdf
https://doi.org/10.3390/s150305293
https://github.com/gazebosim/gz-sim/issues/2764
https://github.com/gazebosim/gz-sim/issues/2982
https://github.com/gazebosim/gz-sim/issues/2982
https://ardupilot.org/dev/docs/SITL_simulation_parameters.html
https://ardupilot.org/dev/docs/SITL_simulation_parameters.html

	Abstract
	Contents
	Introduction
	Background
	Cyber-Physical Systems
	CPS Control Platforms

	Full-System Simulation
	Full-System Simulation in SimBricks

	Physics Simulation

	Motivation
	Design
	Requirements
	An Interface for Physical Simulators
	Limitations

	Implementation
	Protocol
	The intro messages
	The Configuration Phase
	Exchanging Values

	Gazebo Integration
	gem5 Integration

	Evaluation
	Setup
	RQ1: Evaluating Hardware Configurations
	RQ2: Detecting Previously Undetectable Bugs
	RQ3 & RQ4: Performance & Scalability
	RQ5: Implementation Effort

	Related Work
	Discussion and Future Work
	Improving the performance of the physical simulation
	Simulating external conditions
	Validating the accuracy of the simulation
	Choice of the right simulator

	Conclusion
	Glossary
	List of Figures
	List of Tables
	List of Code Listings
	Bibliography

